LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kerr, Jonathan R. (2011)
Publisher: Microbial Ecology in Health and Disease
Journal: Microbial Ecology in Health and Disease
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: bacteria
Antifungal activity has been detected in many bacterial genera, both saprophytes and human pathogens, including Actinomadura, Actinoplanes, Arthrobacter, Micromonospora, Streptomyces, Nocardia, Mycobacterium, Aureobacterium, Bacillus, Bre6ibacterium, Lactobacillus, Rhodococcus, Micrococcus, Streptococcus, Enterococcus, Escherichia, Proteus, Klebsiella, Enterobacter, Serratia, Pseudomonas, Burkholderia, Stenotrophomonas, Agrobacterium, Alcaligenes, Azotobacter, Clostridium and Fusobacterium. A variety of methods have been used to detect this activity in vitro. Presumably, this activity confers an ecological advantage on a bacterial population which competes with other species in a particular habitat. The significance of this activity includes the following. First, development of therapeutic antifungal drugs. Second, development of plant protection agents. Third, fungal growth inhibition within the human body in sites with a normal flora with effects on the pathogenesis and course of human infection. Fourth, inhibition of pathogenic fungi in human clinical specimens, reducing the likelihood of in vitro culture of fungi.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Tomita K, Nishio M, Saitoh K, Yamamoto H, Hoshino Y, Ohkuma H, Konishi M, Miyaki T, Oki T. Pradimicins A, B and C: new antifungal antibiotics I. Taxonomy, production, isolation and physico-chemical properties. J Antibiot 1990; 43 (7): 755 - 62.
    • 2. Walsh TJ, Giri N. Pradimicins: a novel class of broad-spectrum antifungal compounds. Eur J Clin Microbiol Infect Dis 1997; 16 (1): 93 - 7.
    • 3. Trani A, Kettenring J, Ripamonti F, Goldstein B, Ciabatti R. Chemical modifications of the antibiotic, purpuromycin. Farmaco 1993; 48 (5): 637 - 51.
    • 4. Cooper R, Truumees I, Gunnarsson I, Loebenberg D, Horan A, Marquez J, Patel M, Gullo V, Puar M, Das P, et al. Sch 42137, a novel antifungal antibiotic from an Actinoplanes sp. Fermentation, isolation, structure and biological properties [published erratum appears in J Antibiot Aug; 45(8): C-3]. J Antibiot 1992; 45 (4): 444 - 53.
    • 5. Lysenkova LN, Olkhovatova OL, Malkina ND. Formation of a new polyene antibiotic octamycin by a culture of Actinoplanes ianthinogenes subsp. octamycini. Antibiotiki 1986; 31 (10): 741 - 3.
    • 6. Axelrood PE, Clarke AM, Radley R, Zemcov SJ. Douglasfir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens. Can J Microbiol 1996; 42 (7): 690 - 700.
    • 7. Nair MG, Mishra SK, Putnam AR, Pandey RC. Antifungal anthracycline antibiotics, spartanamycins A and B from Micromonospora spp. J Antibiot 1992; 45 (11): 1738 - 45.
    • 8. Wu RY, Yang LM, Yokoi T, Lee KH. Neihumicin, a new cytotoxic antibiotic from Micromonospora neihuensis. I. The producing organism, fermentation, isolation and biological properties. J Antibiot 1988; 41 (4): 481 - 7.
    • 9. Cooper R, Horan AC, Gentile F, Gullo V, Loebenberg D, Marquez J, Patel M, Puar MS, Truumees I. Sch 37137, a novel antifungal compound produced by a Micromonospora sp. Taxonomy, fermentation, isolation, structure and biological properties. J Antibiot 1988; 41 (1): 13 - 9.
    • 10. Nishizawa N, Kondo Y, Koyama M, Omoto S, Iwata M, Tsurouka T, Inouye S. Studies on a new nucleotide antibiotic, dapiramicin. II. Isolation, physico-chemical and biological characterisation. J Antibiot 1984; 37 (1): 1 - 5.
    • 11. Marquez JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D, Miller GH, Patel M, Waitz JA. The hazimicins, a new class of antibiotics. Taxonomy, fermentation, isolation, characterisation and biological properties. J Antibiot 1983; 36 (9): 1101 - 8.
    • 12. Shiomi K, Linuma H, Naganawa H, Hameda M, Hattori S, Nakamura H, Takeuchi T, Litaka Y. New antibiotic produced by Micromonospora globosa. J Antibiot 1990; 43 (8): 1000 - 5.
    • 13. Gold W, Stout HA, Pahano JF, Donovick R. Amphotericin A and B, antifungal antibiotics produced by a Streptomycete. Antibiot Annual 1955 - 56: 579.
    • 14. Hazen EL, Brown R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc Soc Exp Biol 1951; 76: 93.
    • 15. Fushimi S, Nishikawa S, Shimazu A, Seto H. Studies on new phosphate ester antifungal antibiotics phoslactomycins. I. Taxonomy, fermentation, purification and biological activities. J Antibiot 1989; 42 (7): 1019 - 25.
    • 16. Hanafi M, Shibata K, Ueki M, Taniguchi M. UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02. II. Structural elucidation. J Antibiot 1996; 49 (12): 1226 - 31.
    • 17. Fiedler HP, Nega M, Pfefferle C, Groth I, Kempter C, Stephan H, Metzger JW. Kanchanamycins, new polyol macrolide antibiotics produced by Streptomyces oli6aceus Tu 4018. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 1996; 49 (8): 758 - 64.
    • 18. Phay N, Yada H, Higashiyama T, Yokota A, Ichihara A, Tomita F. NP-101A, antifungal antibiotic from Streptomyces aurantiogriseus NPO-101. J Antibiot 1996; 49 (7): 703 - 5.
    • 19. Tanaka Y, Kanaya I, Takahashi Y, Shinose M, Tanaka H, Omura S. Phthoxazolin A, a specific inhibitor of cellulose biosynthesis from microbial origin. I. Discovery, taxonomy of producing microorganism, fermentation, and biological activity. J Antibiot 1993; 46 (8): 1208 - 13.
    • 20. Shiomi K, Arai N, Shinose M, Takahashi Y, Yoshida H, Iwabuchi J, Tanaka Y, Omura S. New antibiotics phthoxazolins B, C and D produced by Streptomyces sp. KO-7888. J Antibiot 1995; 48 (7): 714 - 9.
    • 21. Akeda Y, Shibata K, Ping X, Tanaka T, Taniguchi M. AKD-2A, B, C and D, new antibiotics from Streptomyces sp. OCU-42815. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 1995; 48 (5): 363 - 8.
    • 22. Hochlowski JE, Whittern DN, Hill P, McAlpine JB. Dorrigocins: novel antifungal antibiotics that change the morphology of ras-transformed NIH:3T3 cells to that of normal cells. II. Isolation and elucidation of structures. J Antibiot 1994; 47 (8): 870 - 4.
    • 23. Mulks MH, Nair MG, Putnam AR. In 6itro antibacterial activity of faeriefungin, a new broad-spectrum polyene macrolide antibiotic. Antimicrob Ag Chemother 1990; 34 (9): 1762 - 5.
    • 24. Urakawa A, Otani T, Yoshida K, Nakayama M, SuzukakeTsuchiya K, Hori M. Isolation, structure determination and biological activities of a novel antifungal antibiotic, S-632-C, closely related to glutarimide antibiotics. J Antibiot 1993; 46 (12): 1827 - 33.
    • 25. Singh S, Samanta TB. A121-an antifungal compound from Streptomyces species. Microbios 1992; 71 (288 - 289): 217 - 24.
    • 26. Kotake C, Yamasaki T, Moriyama T, Shinoda M, Komiyama N, Furumai T, Konishi M, Oki T. Butyrolactols A and B, new antifungal antibiotics. Taxonomy, isolation, physico-chemical properties, structure and biological activity. J Antibiot 1992; 45 (9): 1442 - 50.
    • 27. Losilla B, Pommier MT, Bonnaveiro N, Cremieux A, Michel G. Structure activity relationships of stendomycin, a lipopeptide antibiotic from Streptomyces. Microbios 1992; 71 (286): 75 - 80.
    • 28. Ohkuma H, Naruse N, Nishiyama Y, Tsuno T, Hoshino Y, Sawada Y, Konishi M, Oki T. Sultriecin, a new antifungal and antitumor antibiotic from Streptomyces roseiscleroticus. Production, isolation, structure and biological activity. J Antibiot 1992; 45 (8): 1239 - 49.
    • 29. Hakoda S, Tsubotani S, Iwasa T, Suzuki M, Kondo M, Harada S. Production and biological activities of a new antifungal antibiotic, TAN-950 A. J Antibiot 1992; 45 (6): 854 - 60.
    • 30. Yamazaki M, Yamashita T, Harada T, Nishikiori T, Saito S, Shimada N, Fujii A. 44-Homooligomycins A and B, new antitumor antibiotics from Streptomyces bottropensis. Producing organism, fermentation, isolation, structure elucidation and biological properties. J Antibiot 1992; 45 (2): 171 - 9.
    • 31. Hochlowski JE, Mullally MM, Brill GM, Whittern DN, Buko AM, Hill P, McAlpine JB. Dunaimycins, a new complex of spiroketal 24-membered macrolides with immunosuppressive activity. II. Isolation and elucidation of structures. J Antibiot 1991; 44 (12): 1318 - 30.
    • 32. Uramoto M, Kim CJ, Shin-Ya K, Kusakabe H, Isono K, Phillips DR, McCloskey JR. Isolation and characterization of phosmidosine. A new antifungal nucleotide antibiotic. J Antibiot 1991; 44 (4): 375 - 81.
    • 33. Iwamoto T, Tsujii E, Ezaki M, Fujie A, Hashimoto S, Okuhara M, Kohsaka M, Imanaka H, Kawabata K, Inamoto Y, et al. FR109615, a new antifungal antibiotic from Streptomyces setonii. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot 1990; 43 (1): 1 - 7.
    • 34. Ryley JF, Wilson RG, Gravestock MB, Poysen JP. Experimental approaches to antifungal chemotherapy. Adv Pharmacol Chemother 1981; 18: 49 - 176.
    • 35. Yuan WM, Crawford DL. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Env Microbiol 1995; 61 (8): 3119 - 28.
    • 36. Raytapadar S, Datta R, Paul AK. Effects of some heavy metals on growth, pigment and antibiotic production by Streptomyces galbus. Acta Microbiologica et Immunologica Hungarica 1995; 42 (2): 171 - 7.
    • 37. Tunac JB, Graham BD, Dobson WE, Lenzini MD. Novel antitumour antibiotics, CI-940 (PD 114,720) and PD 114,721. Taxonomy, fermentation and biological activity. J Antibiot 1985; 38 (4): 460 - 5.
    • 38. Hasegawa T, Kakushima M, Hatori M, Aburaki S, Kakinuma S, Furumai T. Pradimicins T1 and T2, new antifungal antibiotics produced by an actinomycete II. Structures and biosynthesis. J Antibiot 1993; 46 (4): 598 - 605.
    • 39. Mukhopadhyay T, Vijayakumar EK, Nadkami SR, Sawant SN, Kenia J, Sachse B. 2-Demethylazalomycins F4a and F5a, two new antifungal metabolites from Actinomycete sp. HIL Y-9120362. J Antibiot 1995; 48 (11): 1350 - 2.
    • 40. Iakovleva EP, Omelchenko VN, Tsyganov VA, Shenin LD. New antibiotic, parvulomycin, produced by a culture of Actinomyces par6ulus 6ar. chromogenes 6ar. no6. Antibiotiki 1976; 21 (1): 38 - 40.
    • 41. Cidaria D, Borgonovi G, Pirali G. AB023, novel polyene antibiotics. I. Taxonomy of the producing organism, fermentation and antifungal activity. J Antibiot 1993; 46 (2): 251 - 4.
    • 42. Garagulia AD, Orishchuk LF. Antifungal properties of the genus Mycobacterium. Mikrobiolohichnyi Zhurnal 1973; 35 (5): 648 - 50.
    • 43. Klich MA, Arthur KS, Lex AR, Bland JM. Iturin A: a potential new fungicide for stored grains. Mycopathologia 1994; 127 (2): 123 - 7.
    • 44. Besson F, Peypoux F, Michel G, Delcambe L. The structure of bacillomycin L, an antibiotic from Bacillus subtilis. European J Biochem 1977; 77 (1): 61 - 7.
    • 45. Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF. Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot 1995; 48 (11): 1240 - 7.
    • 46. Besson F, Michel G. Biosynthesis of bacillomycin D by Bacillus subtilis. Evidence for amino acid-activating enzymes by the use of affinity chromatography. FEBS Letters 1992; 308 (1): 18 - 21.
    • 47. Kajimura Y, Sugiyama M, Kaneda M. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J Antibiot 1995; 48 (10): 1095 - 103.
    • 48. Kugler M, Loeffler W, Rapp C, Kern A, Jung G. Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch Microbiol 1990; 153 (3): 276 - 81.
    • 49. Besson F, Michel G. Action of mycosubtilin, an antifungal antibiotic of Bacillus subtilis, on the cell membrane of Saccharomyces cere6isiae. Microbios 1989; 59 (239): 113 - 21.
    • 50. Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 1986; 39 (7): 888 - 901.
    • 51. Aoki Y, Kondoh M, Nakamura M, Fujii T, Yamazaki T, Shimada H, Arisawa M. A new methionine antigonist that has antifungal activity: mode of action. J Antibiot 1994; 47 (8): 909 - 16.
    • 52. Tschen JS, Tseng CN. Bacereutin, an antifungal antibiotic isolated from metabolites of Bacillus cereus CHU 130. Proc Natl Sci Council, PR China-Part B. Life Sciences. 1989; 13 (4): 258 - 61.
    • 53. Konishi M, Nishio M, Saitoh K, Miyaki T, Oki T, Kawaguchi H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot 1989; 42 (12): 1749 - 55.
    • 54. Wakayama S, Ishikawa F, Oishi K. Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob Ag Chemother 1984; 26 (6): 939 - 40.
    • 55. Lebbadi M, Galvez A, Maqueda M, Martinez-Bueno M, Valdivia E. Fungicidin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J Appl Bacteriol 1994; 77 (1): 49 - 53.
    • 56. Galvez A, Maqueda M, Martinez-Bueno M, Lebbadi M, Valdivia E. Isolation and physico-chemical characterisation of an antifungal and antibacterial peptide produced by Bacillus licheniformis A12. Appl Microbiol Biotechnol 1993; 39 (4 - 5): 438 - 42.
    • 57. Sugawara T, Shibazaki M, Nakahara H, Suzuki K. YM47522, a novel antifungal antibiotic produced by Bacillus sp. II. Structure and relative stereochemistry. J Antibiot 1996; 49 (4): 345 - 8.
    • 58. Lewis BA. Inhibition of Candida albicans by methanethiol produced by Brevibacterium linens. Microbiologica 1985; 8: 387 - 90.
    • 59. Collins EB, Hardt P. Inhibition of Candida albicans by Lactobacillus acidophilus. J Dairy Sci 1980; 63: 830 - 2.
    • 60. Guillot N. Elaboration par Lactobacillus acidophilus d'un produit actif contre Candida albicans. Ann Inst Pasteur 1958; 95: 194 - 207.
    • 61. Mardh PA, Soltesz LV. In 6itro interactions between lactobacilli and other microorganisms occurring in the vaginal flora. Scand J Infect Dis 1983; 40Suppl: 47 - 51.
    • 62. Young G, Resca RG, Sullivan MT. Interactions of oral strains of Candida and lactobacilli. J Bacteriol 1956; 72: 525 - 9.
    • 63. Moore-Landecker E, Stotzky G. Inhibition of fungal growth and sporulation by volatile metabolites from bacteria. Can J Microbiol 1972; 18: 957 - 62.
    • 64. Moore-Landecker E, Stotzky G. Effects of concentration of volatile metabolites from bacteria and germinating seeds on fungi in the presence of selective absorbents. Can J Microbiol 1974; 20: 97 - 103.
    • 65. Kaczmarski W, Jakoniuk P, Borowski J. Effect of selected bacteria on mycelial transformation of cells of Candida albicans. Medycyna Doswiadczalna i Mikrobiologia 1989; 41 (3 - 4): 184 - 91.
    • 66. Kaczmarski W, Jakoniuk P, Borowski J. Isolation and identification of the products of Streptococcus faecalis inhibition of mycelial transformation of Candida albicans. Medycyna Doswiadczalna i Mikrobiologia 1989; 41 (3 - 4): 192 - 201.
    • 67. Auger P, Joly J. Study of some factors influencing the growth of Candida albicans in 6itro. Mykosen 1978; 21: 63 - 70.
    • 68. Hummel RP, Malez MP, Miskell PW, Altemeier WA. Suppression of Candida albicans by Escherichia coli. J Trauma 1975; 15: 413 - 8.
    • 69. Isenberg HD, Pisano MA, Carito SL, Berkman JJ. Factors leading to overt monilial disease. I. Preliminary studies of the ecological relationship between Candida albicans and intestinal bacteria. Antibiot Chemother 1960; 10 (6): 353 - 63.
    • 70. Chernin L, Brandis A, Ismailov Z, Chet I. Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 1996; 32: 208 - 12.
    • 71. Gordee RS, Matthews TR. Evaluation of the in 6itro and in 6i6o antifungal activity of pyrrolnitrin. Antimicrob Ag Chemother 1967; 7: 378 - 87.
    • 72. Greiner M, Winkelmann G. Fermentation and isolation of herbicolin A, a peptide antibiotic produced by Erwinia herbicola strain A111. Appl Microbiol Biotechnol 1991; 34 (5): 565 - 9.
    • 73. Winkelmann G, Lupp R, Jung G. Herbicolins-new peptide antibiotics from Erwinia herbicola. J Antibiot 1980; 33 (4): 353 - 8.
    • 74. Shoji J, Hinoo H, Sakazaki R, Kato T, Hattori T, Matsumoto K, Tawara K, Kikuchi J, Terui Y. Isolation of CB-25-I, an antifungal antibiotic, from Serratia plymuthica. J Antibiot 1989; 42 (6): 869 - 74.
    • 75. Kalbe C, Marten P, Berg G. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Res 1996; 151 (4): 433 - 9.
    • 76. Serino L, Reimmann C, Visca P, Beyeler M, Chiesa VD, Haas D. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 1997; 179 (1): 248 - 57.
    • 77. Carmi R, Carmeli S, Levy S, Gough FJ. S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Natural Products 1994; 57 (9): 1200 - 5.
    • 78. Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R. Pyocyanin inhibits yeast growth: a role in the prevention of pulmonary candidiasis. J Clin Pathol 1999; 52: 385 - 7.
    • 79. Gaffney TD, Lam AT, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, et al. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Molecular Plant-Microbe Interactions. 1994; 7 (4): 455 - 63.
    • 80. Elander RP, Mabe JA, Hamill RH, Gorman M. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 1968; 16 (5): 753 - 758 c .
    • 81. Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Peirson EA. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Env Microbiol 1991; 57 (10): 2928 - 34.
    • 82. Harrison L, Teplow DB, Rinaldi M, Strobal G. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J Gen Microbiol 1991; 137 (12): 2857 - 65.
    • 83. Yamaguchi M, Park HJ, Ishizuka S, Omata K, Hirama M. Chemistry and antimicrobial activity of caryoynencins analogs. J Medicinal Chem 1995; 38 (26): 5015 - 22.
    • 84. Barker WR, Callaghan C, Hill L, Noble D, Acred P, Harper PB, Sowa MA, Fletton RA. G1549, a new cyclic hydroxamic acid antibiotic, isolated from culture broth of Pseudomonas alcaligenes. J Antibiot 1979; 32 (11): 1096 - 103.
    • 85. Walker R, Emslie KA, Allan EJ. Bioassay methods for the detection of antifungal activity by Pseudomonas antimicrobica against the grey mould pathogen Botrytis cinerea. J Appl Bacteriol 1996; 81 (5): 531 - 7.
    • 86. Spencer RC. The emergence of epidemic, multiple-antibioticresistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia. J Hosp Infect 1995; 30Suppl: 453 - 64.
    • 87. Lim Y, Suh JW, Kim S, Hyun B, Kim C, Lee CH. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physico-chemical properties and structure elucidation. J Antibiot 1994; 47 (12): 1406 - 16.
    • 88. Abe M, Nakazawa T. Characterisation of haemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol Immunol 1994; 38 (1): 1 - 9.
    • 89. Jayaswal RK, Fernandez M, Upadhyay RS, Visintin L, Kurz M, Webb J, Rinehart K. Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Current Microbiol 1993; 26 (1): 17 - 22.
    • 90. Smirnov VV, Kiprianova EA, Garagulia AD, Dodatko TA, Pilishenko I. Antibiotic activity and siderophores of Pseudomonas cepacia. II. Prikladnaia Biokhimiia i Mikrobiologiia 1990; 26 (1): 75 - 80.
    • 91. Bisacchi GS, Hockstein DR, Koster WH, Parker WL, Rathnum ML, Unger SE. Xylocandin: a new complex of antifungal peptides. II. Structural studies and chemical modifications. J Antibiot 1987; 40 (11): 1520 - 9.
    • 92. Moon SS, Kang PM, Park KS, Kim CH. Plant growth promoting and fungicidal 4-quinolones from Pseudomonas cepacia. Phytochemistry 1996; 42 (2): 365 - 8.
    • 93. Kerr JR. Fungal growth suppression exhibited by Pseudomonas aeruginosa and Pseudomonas cepacia isolates from cystic fibrosis patients. J Infect 1994; 28: 305 - 10.
    • 94. Ferrer Marcelles A, Bellver Moreira P, Cobos Barroso N, Linan Cortes S, Codina Grau G, Fernandez Perez F. Cystic fibrosis: a microbiological study over an 8 year period. Archivos de Bronconeumologia 1995; 31 (10): 494 - 500.
    • 95. Karpati F, Malmborg AS, Alfredsson H, Hjelte L, Strandvik B. Bacterial colonisation with Xanthomonas maltophilia-a retrospective study in a cystic fibrosis patient population. Infection 1994; 22: 258 - 63.
    • 96. Kerr JR. Inhibition of growth of fungi pathogenic to man by Stenotrophomonas maltophilia. J Med Microbiol 1996; 45: 380 - 2.
    • 97. Jakobi M, Winkelmann G, Kaiser D, Kempler C, Jung G, Berg G, Bahl H. Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 1996; 49 (11): 1101 - 4.
    • 98. Alnor D, Frimodt-Moller N, Espersen F, Frederiksen W. Infections with the unusual human pathogens Agrobacterium species and Ochrobactrum anthropi. Clinl Infect Dis 1994; 18 (6): 914 - 20.
    • 99. Dunne Jr WM, Maisch S. Epidemioilogical investigation of infections due to Alcaligenes species in children and patients with cystic fibrosis: use of repetitive element sequence polymerase chain reaction. Clin Infect Dis 1995; 20 (4): 836 - 41.
    • 100. Dolak LA, Castle TM, Hannon BR, Argoudelis AD, Reusser F. Fermentation, isolation, characterisation and structure of nitrosofungin. J Antibiot 1983; 36 (11): 1425 - 30.
    • 101. Pridachina NN, Novogrudskaia ED, Krugliak EB, Chekasina EV, Korchak TS. Azotobacter Chroococcum, a producer of a new antifungal antibiotic. Antibiotiki 1982; 27 (1): 3 - 6.
    • 102. Rosebury T, Gale D, Taylor DF. An approach to the study of interactive phenomena among micro-organisms indigenous to man. J Bacteriol 1954; 67: 135 - 52.
    • 103. Paine TF. In 6itro experiments with monilia and Escherichia coli to explain moniliasis in patients receiving antibiotics. Antibiot Chemother 1952; 2: 653 - 8.
    • 104. Paine TF. The inhibiting actions of bacteria on Candida growth. Antibiot Chemother 1958; 8: 273 - 81.
    • 105. Sprunt K, Redman W. Evidence suggesting importance of role of interactive inhibition in maintaining balance of normal flora. Ann Intern Med 1968; 68: 579 - 90.
    • 106. MacFarlane TW, Makrides HC. A new screening method for investigating microbial interactions. J Appl Bacteriol 1982; 52: 271 - 4.
    • 107. Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem 1964; 28: 575 - 6.
    • 108. Shenbagamurthi P, Smith HA, Becker JM, Steinfield A, Naider F. Design of anticandidal agents; synthesis and biological properties of analogues of polyoxin L. J Med Chem 1983; 26: 1518 - 22.
    • 109. Plempel M. Pharmacokinetics of imidazole antimycotics. Postgrad Med J 1969; 55: 662.
    • 110. Alexander M. Introduction to soil microbiology, 2nd ed. 1977. John Wiley & Sons, New York.
    • 111. Becker JO, Schwinn FJ. Control of soil-borne pathogens with living bacteria and fungi: status and outlook. Pestic Sci 1993; 37: 355 - 63.
    • 112. Hill DS, Stein JI, Torlewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Env Microbiol 1994; 60 (1): 78 - 85.
    • 113. Thomashow LS, Weller DM. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis 6ar. tritici. J Bacteriol 1988; 170 (8): 3499 - 508.
    • 114. Gurusiddaiah S, Weller DM, Sarkar A, Cook JR. Characterisation of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis 6ar tritici and Pythium spp. Antimicrob Ag Chemother 1986; 29 (3): 488 - 95.
    • 115. McLoughlin TJ, Quinn JP, Bettermann A, Bookland R. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Env Microbiol 1992; 58 (5): 1760 - 3.
    • 116. Podile AR, Prakash AP. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Can J Microbiol 1996; 42: 533 - 8.
    • 117. Helstrom PB, Balish F. Effect of oral tetracycline, the microbial flora and the athymic state on gastro-intestinal colonisation and infection of BALB:c mice with Candida albicans. Infect Immun 1979; 23: 764 - 74.
    • 118. Linsemark WF, Gibbons RJ. Suppression of Candida albicans by human oral streptococci in gnotobiotic mice. Infect Immun 1973; 8: 846 - 9.
    • 119. Phillips AW, Balish E. Growth and invasiveness of Candida albicans in the germ-free and conventional mouse after oral challenge. Appl Microbiol 1966; 14: 737 - 41.
    • 120. Seelig MS. Mechanisms by which antibiotics increase the incidence and severity of Candidiasis and alter immunological defenses. Bacteriol Rev 1966; 30: 442 - 59.
    • 121. Kennedy MJ. Inhibition of Candida albicans by the anaerobic oral flora of mice in 6itro. Sabouraudia 1981; 19: 205 - 8.
    • 122. Odds FC. Factors that predispose the host to candidosis. 1988, p.93 - 104. In FC Odds (ed.), Candida and Candidosis, second edition. Baillie`re Tindall, London, England.
    • 123. Govan JR, Nelson JW. Microbiology of lung infection in cystic fibrosis. Br Med Bull 1992; 48: 912 - 30.
    • 124. Hughes WT, Kim HK. Mycoflora in cystic fibrosis: some ecologic aspects of Pseudomonas aeruginosa and Candida albicans. Mycopathologia et Mycologia applicata 1973; 50: 261 - 9.
    • 125. Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 1988; 56: 2515 - 7.
    • 126. Seidmon EJ, Mosovich LL, Neter E. Colonisation by Enterobacteriaceae of the respiratory tract of children with cystic fibrosis of the pancreas and their antibody response. J Pediatr 1975; 87 (4): 528 - 33.
    • 127. Kerr JR. Fungal growth suppression exhibited by Pseudomonas aeruginosa. J Clin Microbiol 1994; 32 (2): 525 - 7.
    • 128. Odds FC. Candidosis of the genitalia. 1988, p.124 - 135. In FC Odds (ed.), Candida and Candidosis, second edition. Baillie`re Tindall, London, England.
    • 129. Hanna E, Hughes G, Eliachar I, Wanamaker J, Tomford W. Fungal osteomyelitis of the temporal bone: a review of reported cases. Ear, Nose and Throat Journal 1993; 72 (8): 532 - 41.
    • 130. Brook I, Santosa G. Microbiology of chronic suppurative otitis media in children in Surabaya, Indonesia. Int J Pediatr Otorhinolaryngol 1995; 31 (1): 23 - 8.
    • 131. Dincer AD, Tekeli A, Ozturk S, Turgut S. Micro-organisms isolated from chronic suppurative otitis media and their antimicrobial sensitivities. Mikrobiyoloji Bulteni 1992; 26 (2): 131 - 8.
    • 132. Kerr JR. Fungal osteomyelitis of the temporal bone. Ear, Nose and Throat Journal 1994; 5: 222.
    • 133. Grillot R, Portmann-Coffin V, Ambroise-Thomas P. Growth inhibition of pathogenic yeasts by Pseudomonas aeruginosa in 6itro: clinical implications in blood cultures. Mycoses 1994; 37: 343 - 7.
    • 134. Hockey LJ, Fujita NK, Gibson TR, Rotrosen D, Montgomerie JZ, Edwards Jr JE. Detection of fungemia obscured by concomitant bacteremia: in 6itro and in 6i6o studies. J Clin Microbiol 1982; 16 (6): 1080 - 5.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from