Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lloyd, Jon (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Over the last 5 or so years, there have been significant advances in the understanding of the current rôle of the terrestrial biosphere in the global carbon cycle, especially in terms of how pools and fluxes are affected by variations in climate (including interannual variability as well as longer-term climate change), increases in atmospheric CO2 concentrations and changed rates of atmospheric nitrogen deposition. At the same time, significant advances have been made in terms of both direct measurement of ecosystem productivity and in an understanding of the key underlying mechanisms modulating carbon fluxes from terrestrial systems. A brief synopsis of these advances is the subject of this paper.DOI: 10.1034/j.1600-0889.1999.00016.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Barrett, D. J., Richardson, A. E. and GiVord, R. M. 1998. Elevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorous. Australian Journal of Plant Physiology 25, 87-93.
    • Bolan, N. S., Naidu, R., Mahimairaja, S. and Baskaran, S. 1994. Influence of low-molecular-weight organic acids on the solubilisation of phosphates. Biology and Fertility of Soil 18, 311-319.
    • Braswell, B. H., Schimel, D. S., Linder, E. and Moore, B. III. 1997. The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870-872.
    • Broecker, W. S., Takahashi, T., Simpson, H. J. and Peng, T.-H. 1979. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409-418.
    • Ciais, P., Tans, P. P., White, J. W. C., Trolier, M., Francey, R. J., Berry, J. A., Randall, D., Sellers, P., Collatz, J. G. and Schimel, D. S. 1995a. Partitioning of ocean and land uptake of CO2 as inferred by d13C measurements from the NOAA Climate Modelling and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research 100, 5051-5070.
    • Clark, D. A. and Clark, D. B. 1994. Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest. Journal of Ecology 82, 865-872.
    • Craig, S. G. and Holme´n, K. J. 1995. Uncertainties in future CO2 projections. Global Biogeochemical Cycles 9, 139-152.
    • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, M., Trexier, M. C. and Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185-190.
    • Dai, A. and Fung, I. Y. 1993. Can climate variability contribute to the ''missing CO2 sink''? Global Biogeochemical Cycles 7, 599-609.
    • DeLucia, E. H., Callaway, R. M., Thomas, E. M. and Schlesinger, W. H. 1997. Mechanisms of phosphorous acquisition for ponderosa pine seedlings under high CO2 and temperature. Annals of Botany 79, 111-120.
    • DuV, S. M. G., Sarath, G. and Plaxton, W. C. 1994. The r oˆle of acid phosphatases in plant phosphorous metabolism. Physiologia Plantarum 90, 791-800.
    • Eissenstat, D. M., Graham, J. H., Syvertsen, J. P. and Drouillard, D. L. 1993. Carbon economy of sour orange in relation to mycorrhizal colonisation and phosphorous status. Annals of Botany 71, 1-10.
    • Enting, I. G., Trudinger, C. M. and Francey, R. J. 1995. A synthesis inversion on the concentration and d13C of atmospheric CO2. T ellus 47B, 35-52.
    • Francey, R. J., Tans, P. P, Allison, C. E., Enting, I. G., White, J. W. C. and Trolier, M. 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373, 495-497.
    • Friedlingstein, P., Fung, I., Holland, E., John, J., Brasseur, G., Erickson, D. and Schimel, D. 1995. On the contribution of CO2 fertilisation to the missing biospheric sink. Global Biogeochemical Cycles 9, 541-556.
    • Galloway, J. N., Schlesinger, W. H., Levy, H. L. II, Michaels, A. and Schnoor, J. L. (1995) Nitrogen fixation: anthropogenic enrichment-environment response. Global Biogeochemical Cycles 9, 235-252.
    • GiVord, R. M., Lutze, J. L. and Barrett, D. 1996. Global atmospheric change eVects on terrestrial carbon sequestration: exploration with a global C- and N-. cycle model (CQUESTN). Plant and Soil 187, 369-387.
    • GiVord, R. M. 1994. The global carbon cycle: A viewpoint on the missing sink. Australian Journal of Plant Physiology 21, 1-15.
    • Goudriaan, J. 1992. Biosphere structure, carbon sequestering potential and the atmospheric 14C carbon record. Journal of Experimental Botany 43, 1111-1119.
    • Goulden, M. L., Wofsey, S. C., Harden, J. W., Trumbore, S. E., Crill, P. M., Gower, S. T., Fries, T., Daube, B. C., Fan, S. M., Sutton, D. J., Bazzaz, F. A. and Munger, J. W. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214-217.
    • Grace, J., Lloyd, J., Macintyre, J. A., Miranda, A. C., Meir, P., Miranda, H. S. Nobre, C. A., MoncrieV, J., Massheder, J., Wright, I. R. and Gash, J. H. C. 1995. Carbon dioxide uptake by undisturbed tropical rainforest, 1992 and 1993. Science 270, 778-780.
    • Hansen, J. and LebedeV, S. 1987. Global trends of measured surface air temperatures. Journal of Geophysical Research 92, 13345-13372.
    • Harley, J. L and Smith, S. E. 1983.Mycorrhizal symbiosis. Academic Press, New York.
    • Hodge, A. 1996. Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biology and Fertility of Soils 23, 388-398.
    • Holland, E. A., Braswell, B. H., Lamarque, J.-F., Townsend, A., Sulzman, J., M u¨ller, J.-M., Dentener, F., Brasseur, G., Levy, H. II, Penner, J. E. and Roelofs, G.-J. 1997. Variations in the predicted spatial distribution of atmospheric nitrogen distribution and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research 102, 15849-15866.
    • Houghton, R. A. 1993 Is carbon accumulating in the northern temperate zone. Global Biogeochemical Cycles 7, 611-617.
    • Kauppi, P. E., Mielika¨inen, K. and Kuusela, K. 1992. Biomass and carbon budget of European forests, 1971-1990. Science 256, 70-74.
    • Keeling, C. D., Chin, J. F. S. and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146-149.
    • Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric CO2 concentration. Nature 381, 218-221.
    • Kohlmaier, G. H., Brohl, H., Sire´, E. O., Plo˝ chl, M. and Reville, R. 1987. Modelling stimulation of plants and ecosystem response to present levels of excessa tmopsheric CO2. T ellus 39B, 155-179.
    • Kolchugina, T. P. and Vinson, T. S. 1993. Carbon sources and sinks in forest biomes in the former Soviet Union. Global Biogeochemical Cycles 7, 291-304.
    • Kolchugina, T. P. and Vinson, T. S. 1995. Role of Russian forests in the global carbon balance. Ambio 24, 258-264.
    • Krankina, O. N., Harmon, M. E. and Winjum, J. K. 1996. Calculation of CO2 net sinks emissions in Russian forests and assessment of mitigation options. Ambio 25, 284-288.
    • Kurz, W. A., Apps, M. J., Beukema, S. J. and Lekstrum, T. 1995. Twentieth century carbon budget of Canadian forests. T ellus 47B, 170-177.
    • Lawes, J. B. and Gilbert, J. H. (1855) On some points connected with agricultural chemistry. Journal of the Royal Agricultural Society of England 16, 411-498.
    • Lewis, J. D., Thomas, R. B. and Strain, B. R. 1994. EVect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) Seedlings. Plant and Soil 165, 81-88.
    • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to atmospheric CO2 concentrations and their interactions with soil nutrient status. I. General principles and forest ecosystems. Functional Ecology 10, 4-32.
    • Los, S. O., Justice, C. J. and Tucker, C. J. 1994. A global 1 by 1 degree NDVI data set for climate studies derived from the GIMMS continental NDVI data. International Journal of Remote Sensing 15, 3347-3363.
    • Malhi, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A. and Scott, S. 1998. Carbon dioxide transfer above a central Amazonian rain forest. Journal of Geophysical Research 103, 31,593-31,612.
    • Malmstr o¨m, C. M., Thompson, M. V., Juday, G. P., Los, S. O., Randerson, J. T. and Field, C. B. 1997. Interannual variation in global-scale net primary production: testing model estimates. Global Biogeochemical Cycles 11, 367-392.
    • Martin, P. H., Valentini, R., Jaques, M., Fabbri, K., Galati, D., Quarantino, R., MoncrieV, J. B., Jarvis, P., Jenson, N. O., Lindroth, A., Grelle, A., Aubinet, M., Ceulemans, R., Kowalski, A. S., Vesala, T., Keronen, P., Matteucci, G., Grainer, A., Berbinger, P., Loustou, D., Schulze, E. D., Tenhunen, J., Rebman, C., Dolman, A. J., Ebers, J. E., Berhofer, C., Grunwald, T., Thorgeirsson, H., Kennedy, P. and Folving, S. 1998. New estimate of the carbon sink strength of EU forests integrating flux measurements, field surveys and space observations: 0.17-0.35 Gt(C). Ambio 27, 582-584.
    • Myeni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698-702.
    • Nabuurs, G. J., Paivinen, R., Sikkema, R. and Mohren, G. J. 1997. The r oˆle of European forests in the global carbon cycle - A review. Biomass and Bioenergy 13, 345-358.
    • O'Neil, E. G. 1995. Responses of soil biota to elevated atmospheric carbon dioxide. Plant and Soil 165, 55-65.
    • Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nu´ n˜ ez, V., Va´squez, M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S. and Grace, J. 1998. Changes in the carbon balance of tropical rainforests. Evidence from long-term plots. Science 282, 439-442.
    • Polglase, P. J. and Wang, Y. P 1992. Potential CO2 enhanced storage by the terrestrial biosphere. Australian Journal of Botany 40, 641-656.
    • Prentice, I. C. and Lloyd, J. 1998. C-quest in the Amazon basin. Nature 396, 619-620.
    • Raich, J. W. and Schlesinger, W. H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. T ellus 44B, 81-99.
    • Rasmusson, E. M. and Arkin, P. A. 1993. A global view of large scale precipitation variability. Journal of Climate 6, 1495-1522.
    • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, d13C and O2/N2 observations. T ellus, this issue.
    • Schimel, D., Enting, I. G., Heimann, M., Wigley, T. M. L., Raynaud, D., Alves, D. and Siegenthaler, U. 1995. CO2 and the carbon cycle. In: Climate Change 1994. Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios (eds. Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, J., Callander, B. A., Haties, E., Harris, N. and Maskell, K.). Cambridge University Press, Cambridge, 39-71.
    • Sedjo, R. A. 1992. Temperate forest ecosystems and the global carbon cycle. Ambio 21, 274-277.
    • Tarafdar, J. C. and Claassen, N. 1988. Organic phosphorus compounds as a phosphorous source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils 5, 308-312.
    • Taylor, J. A. and Lloyd, J. 1992. Sources and sinks of CO2. Australian Journal of Botany 40, 407-417.
    • Thompson, M. V., Randerson, J. T., Malmstr o¨m, C. M., and Field, C. B. 1996. Change in net primary production and respiration - how much is necessary to sustain the terrestrial carbon sink. Global Biogeochemical Cycles 10, 711-726.
    • Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich, J. V. K. III., Moore, B. III and Vo¨r o¨smarty, C. J. 1998. EVect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396, 664-667.
    • Townsend, A. R., Braswell, B. H., Holland, E. A. and Penner, J. E. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications 6, 806-814.
    • Turner, D. P., Koerper, G. J., Harmon, M. E. and Lee, J. J. 1995. A carbon budget for forests of the conterminous United States. Ecological Applications 5, 421-436.
    • Vitousek, P. M. and Sandford, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17, 137-167.
    • Watson, R. T., Rodhe, H., Oeschger, H. and Siegenthaler, U. 1990. Greenhouse gases and aerosols. In: Climate change: the IPCC scientific assesement (eds. Houghton, J. R., Jenkins, G. J. and Ephraums, J. J.). Cambridge University Press, Cambridge, 5-40.
    • Watt, M. and Evans, J. R. 1999. Linking development and determinacy with organic acid eZux from proteoid roots of L upinus albus grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiology, in press.
    • Wong, S.-C., Kriedemann, P. E. and Farquhar, G. D. 1992. CO2×nitrogen interaction on seedling growth of four species of eucalypt. Australian Journal of Botany 40, 457-472.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from