LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rodríguez-Camino, Ernesto; Avissar, Roni (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects: Biosphere-atmosphere transfer scheme, Land-atmosphere interactive dynamics, Soil-biosphere-atmosphere, Land-surface parameters, Atmospheric modelling, Fourier amplitude sensitivity test
This paper explores which are the land-surface parameters playing a key rôle in three surfaceschemes, namely the land-atmosphere interactive dynamics (LAID), the interaction soil-biosphere-atmosphere (ISBA) and the biosphere-atmosphere transfer scheme (BATS). The Fourieramplitude sensitivity test (FAST) was used for that purpose. This test estimates the relativecontribution of model input parameters to the variance of surface heat fluxes. This analysisdemonstrates that, for the three considered schemes, four parameters can explain most of thevariance of surface heat fluxes under a broad range of environmental conditions. Soil wetnessplays a predominant rle for the heat fluxes. Roughness length is the most important parameterfor the momentum flux. Leaf area index, in vegetated land, and texture, mainly in bare land,also have a significant impact on the fluxes. Roughness length is usually more important forsensible heat flux than for latent heat flux, and is mostly important under stable atmosphericconditions. Soil wetness and vegetation parameters are the dominant parameters under buoyantconditions.DOI: 10.1034/j.1600-0870.1998.t01-2-00005.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Avissar, R., Avissar, P., Mahrer, Y. and Bravdo, B. A. 1985. A model to simulate response of plant stomata to environmental conditions. Agric. For. Meteor. 34, 21-29.
    • Avissar, R. and Mahrer, Y. 1988. Mapping frost-sensitive areas with a three dimensional local scale numerical model. Part I: Physical and numerical aspects. J. Appl. Meteorol. 27, 400-413.
    • Avissar, R. and Pielke, R. A. 1989. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev. 117, 2113-2136.
    • Avissar, R. 1991. A statistical-dynamical approach to parameterize subgrid-scale land-surface heterogeneity in climate models. In: L and surface-atmosphere interactions for climate models: observations, models, and analyses. E. F. Wood, Ed. Kluwer, 155-178.
    • Avissar, R. 1992. Conceptual aspects of a statisticaldynamical approach to represent landscape subgridscale heterogeneities in atmospheric models. J. Geophys. Res. 97, 2729-2742.
    • Bougeault, P., Bret. B., Lacarre´re, P. and Noilhan, J. 1991. An experiment with an advanced surface parameterization in a meso-beta-scale. Part II: The 16 June 1986 simulation. Mon. Wea. Rev. 119, 2374-2392.
    • Braud, I., Noilhan, J., Bessemoulin, P., Mascart, P., Haverkamp, R. and Vauclin, M. 1993. Bare-ground surface heat and water exchanges under dry conditions: observations and parameterization. BoundaryL ayer Meteorol. 66, 173-200.
    • Bringfelt, B. 1996. Test of a new land-surface treatment in HIRLAM. HIRL AM technical report no. 23, Norrko¨ ping, Sweden (available from B. Bringfeldt, SMHI, S-60119 Norrk o¨ping, Sweden).
    • Carson, D. J. and Sangster, A. B. 1981. The influence of land-surface albedo and soil moisture on general circulation model simulations. GARP/W CRP: research activities in atmospheric and oceanic modeling, I. D. Rutherford, Eds. Numerical Experimentation Programme, Report no. 2, 5.14-5.21.
    • Charney, J. G., Quirk, W. J., Chow, S. H. and Kornfield, J. 1977. A comparative study of the eVects of albedo on drought in semi-arid regions. J. Atmos. Sci. 34, 1366-1385.
    • Chervin, R. M. 1978. Response of the NCAR general circulation model to change land-surface albedo. Report of the JOC Study Conference on Climate models: performance, intercomparison and sensitivity studies, Washington, DC, GARP Publ. Series, no. 22, Vol. 1, 563-581.
    • Clapp, R. B. and Hornberger, G. M. 1978. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601-604.
    • Collins, D. and Avissar, R. 1994. An evaluation with the Fourier amplitude sensitivity test (FAST) of which land-surface parameters are of greatest importance for atmospheric modeling. J. Climate 7, 681-703.
    • Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G. and Schaibly, J. H. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coeYcients. I. Theory. J. Chem. Phys. 59, 3873-3878.
    • Cukier, R. I., Schaibly, J. H. and Shuler, K. E. 1975. Study of the sensitivity of coupled reaction systems to uncertainties in rate coeYcients. I. Theory. J. Chem. Phys. 59, 873-3878.
    • Cukier R. I., Levine, H. B. and Shuler, K. E. 1978. Nonlinear sensitivity analysis of multiparameter model systems. J. Comp. Phys. 26, 1-42.
    • Dickinson, R. E. 1984. Modelling evapotranspiration for three-dimensional global climate models. Climate process and climate sensitivity. Geophysical Monograph 29, Maurice Ewing Volume 5, J. E. Hansen and T. Takahashi, Eds. American Geophysical Union, Washington, D.C., 58-72.
    • Dickinson, R. E. and Henderson-Sellers, A. 1988. Modelling tropical deforestation, a study of GCM landsurface parameterizations. Quart. J. R. Met. Soc. 114, 439-462.
    • Dickinson, R. E. 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model, NCAR T echnical Note/ NCAR T N-387+ST R. National Center for Atmospheric Research, Boulder, Colorado (available from R. E. Dickinson, Department of Atmospheric Physics, University of Arizona, Tucson, AZ).
    • Famiglietti, J. S. and Wood, E. F. 1991. Evapotranspiration and runoV from large land areas: land surface hydrology for atmospheric general circulation models. Surv. Geophys. 12, 179-204.
    • FAO/UNESCO. 1974. Soil map of the world. Food and Agriculture Organization (FAO), Paris, France.
    • Garratt, J. R. 1992. T he atmospheric boundary layer. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge, U.K., 316 pp.
    • Giard, D. and Bazile, E. 1997. Soil moisture assimilation in a global variable resolution NWP model. Proc. 13th Conference on Hydrology, 2-7 February 1997, LongBeach, California, AMS.
    • Giordani, H. 1993. Experiences de validation unidimensionelles du schema de surface NP89 aux normes ARPEGE sur 3 sites de la campagne EFEDA 91. Centre National de Recherche Meteorologique, Note de Centre no. 24, 20 pp.+Figures (avaialable from Meteo-France, Toulouse, France).
    • Henderson-Sellers, A. 1993. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. J. Climate 6, 227-247.
    • Henderson-Sellers, A., Yang, Z. L. and Dickinson, R. E. 1993. The project for intercomparison of land-surface parameterization schemes. Bull. Amer. Met. Soc. 74, 1335-1349.
    • Henderson-Sellers, A., Pitman, A. J., Love, P. K., Irannejad, P. and Chen, T. H. 1995. The project for intercomparison of land-surface parameterization schemes (PILPS): Phases 2 and 3. Bull. Amer. Met. Soc. 76, 489-503.
    • Henderson-Sellers, A. 1996a. Soil moisture: a critical focus for global change studies. Global and Planetary Change 13, 3-9.
    • Henderson-Sellers, A. 1996b. Soil moisture simulation: achievements of the RICE and PILPS intercomparison workshop and future directions. Global and Planetary Change 13, 99-115.
    • Henderson-Sellers, A. 1996c. Soil moisture: the landsurface ''connexion''. In GOALS, in GOAL Symposium, pp. 107-110, American Meteorological Society.
    • Koster, R. D. and Suarez, M. J. 1992. A comparative analysis of two land surface heterogeneity representations. J. Climate 5, 1379-1390.
    • Jacquemin, B. and Noilhan, J. 1989. A study of rainfall interception using a land surface parameterization for mesoscale meteorological models. J. Appl. Meteor. 28, 1282-1302.
    • Jarvis, P. G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. T rans. Roy. Soc. L ondon, Ser. B 273, 593-610.
    • Li, B. and Avissar, R. 1994. The impact of spatial variability of land-surface characteristics on land-surface heat fluxes. J. Climate 7, 527-537.
    • Liu, Y. and Avissar, R. 1996. Sensitivity of shallow convective precipitation induced by land-surface heteorogeneities to dynamical and cloud microphysical parameters. J. Geophys. Res. 101, 7477-7497.
    • Mahfouf, J. F. and Jacquemin, B. 1989. A study of rainfall interception using a land surface parameterization for mesoscale meteorological models. J. of Appl. Meteor. 28, 1282-1302.
    • Mahfouf, J. F., Manzi, A. O., Noilhan, J., Giordani, H., Deque, M. 1995. The land surface squeme ISBA within the Meteo-France climate model ARPEGE. Part I: Implementation and preliminary results. J. Climate 8, 2039-2057.
    • Manzi, A. O. and Planton, S. 1994. Implementation of the ISBA parameterization scheme for land surface in a GCM - an annual cycle experiment. J. Hydrol. 155, 353-387.
    • McCumber, M. C. and Pielke, R. A. 1981. Simulation of the eVects of surface fluxes of heat and moisture in a mesoscale numerical model: I Soil layer. J. Geophys. Res. 86, 9929-9938.
    • McKay, M. D., Beckman, R. J. and Conover, W. J. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. T echnometrics 21, 239-245.
    • McRae, G. J., Tilden, J. W. and Seinfeld, J. H. 1982. Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST), Computer Chem. Eng. 6, 15-25.
    • Mintz, Y. 1984. The sensitivity of numerically simulated climates to land-surfaces conditions. In: T he global climate, J. Houghton, Ed. Cambridge University Press, 79-105.
    • Miyakoda, K. and Strikler, R. F. 1981: Cumulative results of extended forecast experiments. Part III: Precipitation. Mon. Wea. Rev. 109, 830-842.
    • Noilhan, J. and Planton, S. 1989. A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 117, 536-549.
    • Noilhan, J. and Lacarrere, P. 1995. GCM gridscale evaporation from mesoscale modelling. J. Climate 8, 206-223.
    • Noilhan, J., Mahfouf, J. F., Manzi, A. and Planton, S. 1993. Validations of land-surface parameterizations: Developments and experience and the French weather service. Proc. Seminar ECMW F, 7-11 September 1992, ECMWF Reading, UK, 125-158.
    • Pielke, R. A. 1984. Mesoscale meteorological modeling. Academic Press, New York, 612 pp.
    • Rowntree, P. R. and Bolton, J. A. 1978. Experiments with soil moisture anomalies over Europe. The GARP programme on numerical experimentation: research activities in atmospheric and oceanic modeling. R. Asselin, Ed. Report no. 18, WMO/ICSU, 63 pp.
    • Shukla, J. and Mintz, Y. 1982. Influence of land-surface evapotranspiration on the earth's climate. Science 215, 1498-1501.
    • Sud, Y. C., Shukla, J. and Mintz, Y. 1988. Influence of land-surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor. 27, 1036-1054.
    • Sud, Y. C., Sellers, P. J., Mintz, Y., Chou, M. D., Walker, G. K. and Smith, W. E. 1990. Influence of the biosphere on the global circulation and hydrological cycle - A GCM simulation experiment. Agric. For. Meteor. 52, 1036-1054.
    • Thompson, N., Barrie and Ayles, M. 1981. The Meteorological OYce rainfall and evaporation calculation system: MORECS. Hydrological Memorandum 45, 69 pp.
    • Uliasz, M. 1988. Application of the FAST method to analyze the sensitivity - uncertainty of a Lagrangian model of sulphur transport in Europe. Water, Air and Soil Pollution 40, 33-49.
    • U.S. Department of Agriculture. 1951. Soil survey manual. US Dep. Agr. Handbook 18, 1-503.
    • Walter, J. and Rowntree, P. R. 1977. The eVect of soil moisture on circulation and rainfall in a tropical model. Quart. J. Roy. Meteor. Soc. 103, 29-46.
    • Wilson, M. F. 1984. T he construction and use of land surface information in a general circulation climate model. Unpublished PhD thesis, University of Liverpool, United Kigdom, 346 pp.
    • Wilson, M. F. and Henderson-Sellers, A. 1985. A global archive of land cover and soils data sets use in general circulation models. J. Climate 5, 119-143.
    • Wilson, M. F., Henderson-Sellers, A., Dickinson, R. E. and Kennedy, P. J. 1987. Investigation of the sensitivity of the land-surface parameterization of the NCAR community climate model in regions of tundra vegetation. J. Climate 7, 319-343.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article