LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tangborn, Andrew (2004)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal in part because of high computational cost of evolving the error covariance for both linear and non-linear systems (in this case, the extended Kalman filter). Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics by implementing a wavelet approximation scheme on the assimilation of the one-dimensional Burgers’ equation. The discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6% of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Benton, E. R. and Platzman, G. W. 1972. A table of solutions of the one-dimensional Burgers' equation. Quart. Appl. Math. 30, 195-212.
    • Beylkin, G., Coifman, R. and Rokhlin, V. 1991. Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 41, 141- 183.
    • Chin, T. M. and Mariano, A. J. 1994. Wavelet-based compression of covariances in Kalman filtering of geophysical flows. Proc. SPIE, 2242.
    • Chin, T. M., Mariano, A. J. and Chassignet, E. P. 1999. Spatial regression and multiscale approximations for sequential data assimilation in ocean models. J. Geophys. Res. 104, 7991-8014.
    • Cohn, S. E., da Silva, A., Guo, J., Sienkiewicz, M. and Lamich, D. 1998. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev. 126, 2913-2926.
    • Cohn, S. E. and Todling, R. 1996. Approximate data assimilation schemes for stable and unstable dynamics. J. Meteorol. Soc. Jpn. 74, 63-75.
    • Daubechies, I. 1988. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909-996.
    • Dee, D. P. 1991. Simplification of the Kalman filter for meteorological data assimilation. Q. J. R. Meteorol. Soc. 117, 365-384.
    • Dee, D. P. 1995. On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev. 123, 1128-1145.
    • Desroziers, G. and Lafore, J-P. 1993. A coordinate transformation for objective frontal analysis. Mon. Wea. Rev. 121, 1531-1553.
    • Evensen, G. 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res.-Oceans 99, 10 143-10 162.
    • Farrell, B. F. and Ioannou, P. J. 2002. Accurate low-dimensional approximation of the linear dynamics of fluid flow. J. Atmos. Sci. 58, 2771-2789.
    • Farrell, B. F. and Ioannou, P. J. 2001. State estimation using a reducedorder Kalman filter. J. Atmos. Sci. 58, 3666- 3680.
    • Gottelmann, J. 1999. Locally supported wavelets on manifolds with Applications to the 2D sphere. Appl. Computa. Harmonic Anal. 7, 1- 33.
    • Kalman, R. E. 1960. A new approach to linear filter and prediction problems. Trans. ASME, Ser. D, 98, 35- 45.
    • Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev. 126, 796-811.
    • Lermusiaux, P. F. J. and Robinson, A. R. 1999. Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev. 127, 1385-1407.
    • Lermusiaux, P. F. J. 1999. Data assimilation via error subspace statistical estimation. Mon. Wea. Rev. 127, 1408-1432.
    • Mallat, S. G. 1989. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 675- 693.
    • Me´nard, R. 1994. Kalman filtering of Burgers' equation and its application to atmospheric data assimilation. Ph.D. Thesis, Mcgill University, Montreal.
    • Moore, B. C. 1981. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26, 17- 31.
    • Parish, D. F. and Derber, J. C. 1992. The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev. 120, 1747-1763.
    • Press, W. H., Teukolsky, S. A., Vetterling, W.T. and Flannery, B. P. 1992. Numerical recipes. Cambridge Univ. Press, Cambridge, UK.
    • Riishøjgaard, L. P. 1998. A direct way of specifying flow-dependent background error Correlations for meteorological analysis systems. Tellus 50A, 43-57.
    • Strang, G. and Nguyen, T. 1996. Wavelets and filter banks. WellesleyCambridge Press, Wellesley, MA.
    • Tangborn, A. and Zhang, S. 2000. Wavelet transform adapted to an approximate Kalman filter system. Appl. Num. Math. 33, 307-316.
    • Tippet, M. K., Cohn, S. E., Todling, R. and Marchesin, D. 2000. Lowdimensional representation of error covariance. Tellus 52, 533-553.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from