Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bulović, Vladmir; Wood, Vanessa (2010)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: Review Articles, TP1-1185, nanocrystals, Chemical technology, displays, lighting, optoelectronics
Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Fo¨ rster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QDLED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs. Keywords: nanocrystals; optoelectronics; displays; lighting (Published: 7 July 2010) Citation: Nano Reviews 2010, 1: 5202 - DOI: 10.3402/nano.v1i0.5202
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 1993; 115: 8706 15.
    • 2. Coe S, Woo WK, Bawendi MG, Bulovic´ V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002; 420: 800 3.
    • 3. Tekin E, Smith PJ, Hoeppener S, van de Berg AMJ, Susha AS, Rogach AL, et al. Inkjet printing of luminescent CdTe nanocrystal-polymer composites. Adv Funct Mat 2007; 17: 23 8.
    • 4. Wood V, Panzer ML, Long J, Bradley MS, Halpert JE, Bawendi MG, et al. Inkjet printing of polymer-quantum dot composites for full color AC electroluminescent displays. Adv Mater 2009; 21: 2151 5.
    • 5. Kim LA, Anikeeva PO, Coe-Sullivan SA, Steckel JS, Bawendi MG, Bulovic´ V. Contact printing of quantum dot light-emitting devices. Nano Lett 2008; 8: 4513 7.
    • 6. Chan W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281: 2016 8.
    • 7. Stouwdam JW, Janssen RAJ. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J Mater Chem 2008; 18: 1889 94.
    • 8. Cho K-S, Lee EK, Joo WJ, Jang E, Kim TH, Lee SJ, et al. Highperformance crosslinked colloidal quantum-dot light emitting diodes. Nat Photonics 2009; 3: 341 5.
    • 9. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 1996; 100: 468 71.
    • 10. Chen Y, Vela J, Htoon H, Casson JL, Werder DJ, Bussian DA, et al. 'Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking. J Am Chem Soc 2008; 130: 5026 7.
    • 11. Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J-P, Dubertret B. Towards non-blinking colloidal quantum dots. Nat Mater 2008; 7: 659 64.
    • 12. Garcia-Santamara F, Chen Y, Vela J, Schaller RD, Hollingsworth JA, Klimov VI. Suppressed auger recombination in 'giant' nanocrystals boosts optical gain performance. Nano Lett 2009; 9: 3482 8.
    • 13. Wood V, Panzer MJ, Caruge J-M, Halpert JE, Bawendi MG, Bulovic´ V. Selection of metal oxide charge transport layer for colloidal quantum dot LEDs. ACS Nano 2009; 3: 3581 6.
    • 14. Kovalenko MV, Scheele M, Talapin DV. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009; 324: 1417 20.
    • 15. Morgan NY, Leatherdale CA, Drndic M, Vitasovic M, Kastner MA, Bawendi MG. Electronic transport in films of colloidal CdSe nanocrystals. Phys Rev B 2002; 66: 075339.
    • 16. Lee J, Sundar VC, Heine JR, Bawendi MG, Jensen KF. Full color emission from II VI semiconductor quantum dotpolymer composites. Adv Mater 2000; 12: 1102 5.
    • 17. Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994; 370: 354 7.
    • 18. Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF. Electroluminescence from CdSe quantum-dot/polymer composites. Appl Phys Lett 1995; 66: 1316 8.
    • 19. Anikeeva PO, Madigan CF, Halpert JE, Bawendi MG, Bulovic´ V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys Rev B 2008; 78: 085434.
    • 20. Anikeeva PO, Halpert JE, Bawendi MG, Bulovic´ V. QD-LEDs with electroluminescence tunable over the entire visible spectrum. Nano Lett 2009; 9: 2532 6.
    • 21. Anikeeva PO, Halpert JE, Bawendi MG, Bulovic´ V. Electroluminescence from a mixed red green blue colloidal quantum dot monolayer. Nano Lett 2007; 7: 2196 200.
    • 22. Mueller AH, Petruska MA, Achermann M, Werder DJ, Akhadov EA, Koleske DD, et al. Multicolor light-emitting diodes based on semiconducting nanocrystals encapsulated in GaN charge injection layers. Nano Lett 2005; 5: 1039 44.
    • 23. Caruge J-M, Halpert JE, Wood V, Bawendi MG, Bulovic´ V. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photonics 2008; 2: 247 50.
    • 24. Achermann M, Petruska MA, Koleske DD, Crawford MH, Klimov VI. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett 2006; 6: 1396 400.
    • 25. Wood V, Panzer MJ, Caruge J-M, Halpert JE, Bawendi MG, Bulovic´ V. Air-stable operation of transparent, colloidal quantum dot-based LEDs with a unipolar device architecture. Nano Lett 2010; 10: 24 9.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article