LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dörnbrack, Andreas; Leutbecher, Martin; Kivi, Rigel; Kyrö, Esko (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
On 22 January 1997 1200 UT, the routine radiosonde from Sodankyla¨ , Finland, measured arecord low temperature of −94.5°C at 26 km. Mesoscale numerical simulations indicate strongmountain wave activity on this day. Two stratospheric temperature minima are simulated: onedirectly above the Scandinavian mountain ridge and another minimum in its lee about 500 kmto the east. Both minima are not resolved in the global analyses. The radiosonde profile as wellas the mesoscale model indicate that the eastern mesoscale temperature anomaly is caused byorographic inertia-gravity waves, i.e., hydrostatic mountain waves influenced by Coriolis force.Stratospheric ice clouds were observed visually and by ground-based lidar at Kiruna, Swedenand Sodankyla¨ , Finland on this day. The formation of these ice clouds required the cooling inthe mountain waves as the temperature according to global analyses was about 3 K above thefrost point. The occurrence of additional polar stratospheric ice clouds due to mountain-wavecooling increases the efficiency of chlorine activation and has implications for the resultingArctic ozone depletion. The extraordinary event under consideration occurred during a coldair outbreak with a cold front passing over the Scandinavian orography. This front was associatedwith strong winds in the lower troposphere. At the same time, northern Scandinavia waslocated below the inner edge of the polar vortex, where low synoptic-scale stratospheric temperaturesand a strong polar night jet are found.DOI: 10.1034/j.1600-0870.1999.00028.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Do¨ rnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., Reimer, E. and Peter, T. 1998a. Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature 391, 675-678.
    • Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Do¨ rnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T. and Peter, T. 1998b. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785-5796.
    • Coy, L., Nash, E. R. and Newman, P. A. 1997. Meteorology of the polar vortex: Spring 1997. Geophys. Res. L ett. 24, 2693-2696.
    • Deshler, T., Peter, T., M u¨ller, R. and Crutzen, P. J. 1994. The lifetime of leewave-induced ice particles in the Arctic stratosphere (1). Balloon-borne observations. Geophys. Res. L ett. 21, 2473-2478.
    • Dietrichs, H. 1950. U¨ber die Entstehung der Perlmutterwolken. Meteorol. Rundschau 3, 208-213.
    • D o¨rnbrack, A., Leutbecher, M., Volkert, H. and Wirth, M. 1998. Mesoscale forecasts of stratospheric mountain waves. Meteorol. Appl. 5, 117-126.
    • Dudhia, J. 1993. A non-hydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121, 1493-1513.
    • Fricke, K.-H., M u¨ller, K. P., Baumgarten, G. and Siebert, J. 1997. Koordinierte Feldmessungen zum Einfluss von Leewellen auf Wolkenfelder in der polaren Stratospha¨re. Results presented at the 7th Statusseminar des Ozonforschungsprogrammes des BMBF, 10 and 11 July, 1997 in Bonn. Available from: Physikalisches Institut der Universita¨t Bonn, Nußallee 12, D-53115 Bonn, Germany.
    • Gill, A. E. 1982. Atmosphere-ocean dynamics. Academic Press, 662 pp.
    • Grell, G. A., Dudhia J. and StauVer, D. R. 1994. A description of the 5th-generation Penn State/NCAR mesoscale model (MM5). Techn. Note 398, National Center for Atmospheric Research, Boulder, USA, 121 pp.
    • Hanson, D. and Mauersberger, K. 1988. Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere. Geophys. Res. L ett. 15, 855-858.
    • Hartley, D. E., Villarin, J. T., Black, R. X. and Davies, C. A. 1998. A new perspective on the dynamical link between the stratosphere and troposphere. Nature 391, 471-474.
    • Kivi, R., Kyr o¨, E., Wedekind, C., Rontu, L., Do¨ rnbrack, A., Stein, B., Wille, H., Mitev, V., Matthey, R., Rosen, J., Kjome, N., Rizi, V., Redaelli, G., Lazzarotto, B., Calpini, B., Del Guasta, M., Morandi, M., Stefanutti, L., Agostini, P., Antonelli, A., Rummukainen, M., Turunen, T. and Karhu, J. 1998. SAONAS activities at Sodankyla¨ in winter 1996/1997. Proc. 4th European Workshop on Polar stratospheric ozone, Schliersee, Bavaria, Germany. Report of the European Comission EUR 18032 EN, 135-138.
    • Knudsen, B. M., Rosen, J. M., Kjome, N. T. and Whitten, A. T. 1996. Comparison of analysed stratospheric temperatures and calculated trajectories with long-duration balloon data. J. Geophys. Res. 101, 19137-19145.
    • Leutbecher, M. 1998. Die Ausbreitung orographisch angeregter Schwerewellen in die Stratospha¨re - L ineare T heorie, idealisierte und realita¨tsnahe numerische Simulation. PhD thesis, Ludwig-Maximilians-Universita¨t Mu¨ nchen. Rep. FB-98-17, available from Deutsches Zentrum f u¨r Luft- und Raumfahrt, D 51170 K o¨ln, Germany.
    • Leutbecher, M. and Volkert, H. 1996. Stratospheric temperature anomalies and mountain waves: A threedimensional simulation using a multi-scale weather prediction model. Geophys. Res. L ett. 23, 3329-3332.
    • Nash, J. 1994. Upper wind observing systems used for meteorological operations. Annales Geophysicae 12, 691-710.
    • Nastrom, G. D. and Fritts, D. C. 1992. Sources of mesoscale variability of gravity waves. (I). Topographic excitation. J. Atmos. Sci. 49, 101-110.
    • Pawson, S., Naujokat, B. and Labitzke, K. 1995. On the polar stratospheric cloud formation potential of the northern stratosphere. J. Geophys. Res. 100, 23215-23225.
    • Peter, T. 1997. Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annu. Rev. Phys. Chem. 48, 785-822.
    • Queney, P. 1948. The problem of airflow over mountains: A summary of theoretical studies. Bull. Am. Meteorol. Soc. 29, 16-27.
    • Shutts, G. J., Kitchen, M. and Hoare, P. H. 1988. A large amplitude gravity wave in the lower stratosphere detected by radiosonde. Q. J. R. Meteorol. Soc. 114, 579-594.
    • Shutts, G. J., Healey, P. and Mobbs, S. D. 1994. A multiple sounding technique for the study of gravity waves. Q. J. R. Meteorol. Soc. 120, 59-77.
    • Stanford, J. L. and Davies, J. S. 1974. A century of stratospheric cloud reports: 1870-1972. Bull. Am. Meteorol. Soc. 55, 213-219.
    • St o¨rmer, C. 1929. Remarkable clouds at high altitudes. Nature 123, 940-941.
    • St o¨rmer, C. 1931. H o¨he und Farbverteilung der Perlmutterwolken. Geofysiske Publikasjoner IX, 3-25.
    • St o¨rmer, C. 1934. H o¨henmessungen von Stratospha¨renwolken. Beitr. Phys. fr. Atmos. 21, 1-6.
    • Teitelbaum, H. and Sadourny, R. 1998. The role of planetary waves in the formation of polar stratospheric couds, T ellus 50A, 302-312.
    • Whiteway, J. A., Duck, T. J., Donovan, D. P., Bird, J. C., Pal, S. R. and Carswell, A. I. 1997. Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys. Res. L ett. 24, 1387-1390.
    • Wirth, M., Weiß, V., Renger, W., D o¨rnbrack, A., Leutbecher, M., Volkert, H., Tsias, A., Carslaw, K. S. and Peter, T. 1999. Model guided Lagrangian observation and simulation of mountain polar stratospheric clouds. J. Geophys. Res. in press.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from