Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Patricia Krecl; Christer Johansson; Johan Ström; Boel Lövenheim; Jean-Charles Gallet (2014)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, Black carbon; Elemental carbon; Mobile measurements; Urban aerosols; Air quality; Multiple regression modeling; Sweden, Sweden, black carbon, mobile measurements, urban air quality; atmospheric physics; aerosol science, elemental carbon, urban aerosols, air quality, multiple regression modelling
Carbon-containing particles are associated with adverse health effects, and their light-absorbing fractions were recently estimated to be the second largest contributor to global warming after carbon dioxide. Knowledge on the spatiotemporal variability of light-absorbing carbon (LAC) particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This work reports on the first mobile LAC mass concentrations (MLAC) measured on-board four taxis in the Stockholm metropolitan area in November 2011. On average, concentrations were higher and more variable during daytime (median of 1.9 µg m−3 and median absolute deviation of 2.3 µg m−3). Night-time (21:00–05:00) measurements were very similar for all road types and also compared to levels monitored at an urban background fixed site (median of 0.9 µg m−3). We observed a large intra-urban variability in concentrations, with maxima levels inside road tunnels (median and 95th percentile of 7.5 and 40.1 µg m−3, respectively). Highways presented the second ranked concentrations (median and 95th percentile of 3.2 and 9.7 µg m−3, respectively) associated with highest vehicle speed (median of 65 km h−1), traffic rates (median of 62 000 vehicles day−1 and 1500 vehicles h−1) and diesel vehicles share (7–10%) when compared to main roads, canyon streets, and local roads. Multiple regression modelling identified hourly traffic rate and MLAC concentration measured at an urban background site as the best predictors of on-road concentrations, but explained only 25% of the observed variability. This feasibility study proved to be a time- and cost-effective approach to map out ambient MLAC concentrations in Stockholm and more research is required to represent the distribution in other periods of the year. Simultaneous monitoring of other pollutants, closely correlated to MLAC levels in traffic-polluted environments, and including video recording of road and traffic changes would be an asset.Keywords: black carbon, elemental carbon, mobile measurements, urban aerosols, air quality, multiple regression modelling, Sweden(Published: 9 April 2014)Citation: Tellus B 2014, 66, 23533, http://dx.doi.org/10.3402/tellusb.v66.23533To access the supplementary material to this article, please see Supplementary files under Article Tools online.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Attfield, M. D., Schleiff, P. L., Lubin, J. H., Blair, A., Stewart, P. A. and co-authors 2012. The diesel exhaust in miners study: a cohort mortality study with emphasis on lung cancer. J. Natl. Cancer. Inst. 104, 869 883.
    • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T. and co-authors. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 118, 5380 5552. DOI: 10.1002/jgrd.50171.
    • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Tech. Rep. Off. J. Eur. Comm. L152, 1 44.
    • Dons, E., Int Panis, L., Van Poppel, M., Theunis, J. and Wets, G. 2012. Personal exposure to black carbon in transport microenvironments. Atmos. Environ. 55, 392 398.
    • Draxler, R. R. and Rolph, G. D. 2013. HYSPLIT (HYbrid SingleParticle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD.
    • Gidhagen, L., Johansson, C., Str o¨m, J., Kristensson, A., Swietlicki, E. and co-authors. 2003. Model simulation of ultrafine particles inside a road tunnel. Atmos. Environ. 37, 2023 2036.
    • Hair, J. F., Tatham, R. L., Anderson, R. E. and Black, W. 1998. Multivariate Data Analysis. 5th ed. Prentice Hall International, London.
    • Hansson, H.-C., Christer, J., Nyqvist, G., Kindbom, K., A˚stro¨ m, S. and co-authors. 2011. Black carbon possibilities to reduce emissions and potential effects. Tech. Rep. ITM. 202, 1 64. Online at: http://slb.nu/slb/rapporter/pdf8/itm2011_202.pdf
    • Henderson, S., Beckerman, B., Jerret, M. and Brauer, M. 2007. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 41, 2422 2428.
    • Janssen, N. A. H., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F. and co-authors. 2012. In: Health Effects of Black Carbon (ed. R. Bohr). WHO Regional Office for Europe, Copenhagen, pp. 1 86. Online at: http://www.unece. org/fileadmin/DAM/env/lrtap/conv/Health_Effects_of_Black_ Carbon_report.pdf
    • Johansson, C. and Eneroth, K. 2007. Traffic emissions, socioeconomic valuation and socioeconomic measures. Stockholm and Uppsala Air Quality Association. Tech. Report LVF. 2007(2), 1 22. Online at: http://www.slb.nu/slb/rapporter/pdf8/ lvf2007_002.pdf
    • Keuken, M. P., Jonkers, S., Zandveld, P., Voogt, M. and Elshout van den, S. 2012. Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health. Atmos. Environ. 61, 1 8.
    • Krecl, P., Johansson, C. and Stro¨ m, J. 2010. Spatiotemporal variability of light-absorbing carbon concentration in a residential area impacted by woodsmoke. J. Air Waste Manage. 60, 356 368.
    • Krecl, P., Stro¨ m, J. and Johansson, C. 2007. Carbon content of atmospheric aerosols in a residential area during the wood combustion season in Sweden. Atmos. Environ. 41, 6974 6985.
    • Krecl, P., Targino, A. C. and Johansson, C. 2011. Spatiotemporal distribution of light-absorbing carbon and its relationship to other atmospheric pollutants in Stockholm. Atmos. Chem. Phys. 11, 11553 11567.
    • Mohr, C., Richter, R., DeCarlo, P. F., Pre´ voˆ t, A. S. H. and Baltensperger, U. 2011. Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data. Atmos. Chem. Phys. 11, 7465 7482.
    • Norlin, L. 2013. Dataproduktspecifikation Det svenska va¨ gna¨ tet, Version1.0. Trafikverket. Online at: http://www.trafikverket.se/ TrvSeFiler/Foretag/Bygga_och_underhalla/Vag/Dataproduktion specifikationer/Trafiknat/Vag/DPS_Vagnat_1.pdf (only in Swedish).
    • Norman, M. and Johansson, C. 2006. Studies of some measures to reduce road dust emissions from paved roads in Scandinavia. Atmos. Environ. 40, 6154 6164.
    • Noth, E. M., Hammond, S. K., Biging, G. S. and Tager, I. B. 2011. A spatial temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. Atmos. Environ. 45, 2394 2403.
    • Oanh, N. T. K., Reutergardh, L. B. and Dung, N. T. 1999. Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ. Sci. Technol. 33, 2703 2709.
    • Pirjola, L., Parviainen, H., Hussein, T., Valli, A., H a¨meri, K. and co-authors. 2004. ''Sniffer'' a novel tool for chasing vehicles and measuring traffic pollutants. Atmos. Environ. 38, 3625 3635.
    • Schneider, J., Kirchner, U., Borrmann, S., Vogt, R. and Scheer, V. 2008. In situ measurements of particle number concentration, chemically resolved size distributions and black carbon content of traffic-related emissions on German motorways, rural roads and in city traffic. Atmos. Environ. 42, 4257 4268.
    • Silverman, D. T., Samanic, C. M., Lubin, J. H., Blair, A. E., Stewart, P. A. and co-authors. 2012. The diesel exhaust in miners study: a nested case control study of lung cancer and diesel exhaust. J. Natl. Cancer. Inst. 104, 855 868.
    • Statistics Sweden. 2012. Population Statistics 2012. Online at: http://www.scb.se/Pages/TableAndChart____350653.aspx
    • Thornhill, D. A., de Foy, B., Herndon, S. C., Onasch, T. B., Wood, E. C. and co-authors 2008. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City. Atmos. Chem. Phys. 8, 3093 3105.
    • Tunved, P., Hansson, H. C., Kulmala, M., Aalto, P., Viisanen, Y. and co-authors 2003. One year boundary layer aerosol size distribution data from five Nordic background stations. Atmos. Chem. Phys. 3, 2183 2205.
    • Unger, N., Bond, T. C., Wang, J. S., Koch, D. M., Menon, S. and co-authors 2010. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci. U. S. A. 107, 3382 3387.
    • Vardoulakis, S., Fisherb, B. E. A., Pericleous, K. and GonzalezFlescac, N. 2003. Modelling air quality in street canyons: a review. Atmos. Environ. 37, 155 182.
    • Virkkula, A., M a¨kela, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A. and co-authors. 2007. A simple procedure for correcting loading effects of Aethalometer data. J. Air Waste Manage. 57, 1214 1222.
    • Wallace, J., Corr, D., Deluca, P., Kanarogloua, P. and McCarry, B. 2009. Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada. J. Environ. Monit. 11, 998 1003.
    • Wang, M., Zhu, T., Zheng, J., Zhang, R. Y., Zhang, S. Q. and coauthors 2009. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 9, 8247 8263.
    • Wang, X., Westerdahl, D., Wu, Y., Pan, X. and Zhang, K. M. 2011. On-road emission factor distributions of individual diesel vehicles in and around Beijing, China. Atmos. Environ. 45, 503 513.
    • Weimer, S., Mohr, C., Richter, R., Keller, J., Mohr, M. and coauthors 2009. Mobile measurements of aerosol number and volume size distributions in an Alpine valley: influence of traffic versus wood burning. Atmos. Environ. 43, 624 630.
    • Westerdahl, D., Fruin, S., Sax, T., Fine, P. M. and Sioutas, C. 2005. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 39, 3597 3610.
    • Yli-Tuomi, T., Aarnio, P., Pirjola, L., Makela, T., Hillamo, R. and co-authors 2005. Emissions of fine particles, NOx, and CO from on-road vehicles in Finland. Atmos. Environ. 39, 6696 6706.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article