Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ju, Weimin; Chen, Jing M.; Black, T, Andrew; Barr, Alan G.; McCaughey, Harry; Roulet, Nigel T. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The hydrological cycle has significant effects on the terrestrial carbon (C) balance through its controls on photosynthesis and C decomposition. A detailed representation of the water cycle in terrestrial C cycle models is essential for reliable estimates of C budgets. However, it is challenging to accurately describe the spatial and temporal variations of soil water, especially for regional and global applications. Vertical and horizontal movements of soil water should be included. To constrain the hydrology-related uncertainty in modelling the regional C balance, a three-dimensional hydrological module was incorporated into the Integrated Terrestrial Ecosystem Carbon-budget model (InTEC V3.0). We also added an explicit parameterization of wetlands. The inclusion of the hydrological module considerably improved the model's ability to simulate C content and balances in different ecosystems. Compared with measurements at five flux-tower sites, the model captured 85% and 82% of the variations in volumetric soil moisture content in the 0–10 cm and 10–30 cm depths during the growing season and 84% of the interannual variability in the measured C balance. The simulations showed that lateral subsurface water redistribution is a necessary mechanism for simulating water table depth for both poorly drained forest and peatland sites. Nationally, soil C content and their spatial variability are significantly related to drainage class. Poorly drained areas are important C sinks at the regional scale, however, their soil C content and balances are difficult to model and may have been inadequately represented in previous C cycle models. The InTEC V3.0 model predicted an annual net C uptake by Canada's forests and wetlands for the period 1901–1998 of 111.9 Tg C yr−1, which is 41.4 Tg C yr−1 larger than our previous estimate (InTEC V2.0). The increase in the net C uptake occurred mainly in poorly drained regions and resulted from the inclusion of a separate wetland parameterization and a detailed hydrologic module with lateral flow in InTEC V3.0.DOI: 10.1111/j.1600-0889.2005.00168.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alm, J., Schulman, L., Walden, J., Nykanen, H., Martikainen, P. J. and Silvola, J. 1999. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80, 161-174.
    • Amiro, B. D. and Chen, J. M. 2003. Forest-fire-scar aging using spotvegetation for Canadian ecoregions. Canadian Journal of Forest Research 33, 1116-1125.
    • Arain, M. A., Black, T. A., Barr, A. G., Jarvis, P. G., Massheder, J. M., Verseghy, D. L. and Nesic, Z. 2002. Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Canadian Journal of Forest Research 32, 878-891.
    • Ball, J. T., Woodrow, I. E. and Berry, J. A. 1987. A model predicting stomatal conductnance amd its contribution to the control of photosynthesis under different environmental conditions. In: Progress in Photosynthesis Research (ed. J. Biggins). Martinus Nijhoff Publishers, Dordrecht, 221-224.
    • Baron, J. S., Hartman, M. D., Band, L. E. and Lammers, R. B. 2000. Sensitivity of a high-elevation rocky mountain watershed to altered climate and co2. Water Resources Research 36, 89-99.
    • Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K. and Nesic, Z. 2004. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology 126, 237-255.
    • Beven, K. 1997. TOPMODEL: a critique. Hydrological Processes 11, 1069-1085.
    • Beven, K. J. and Kirkby, M. J. 1979. A physically based variable contributing model of basin hydrology. Hydrological Science Bulletin 24, 43-69.
    • Black, T. A., Denhartog, G., Neumann, H. H., Blanken, P. D., Yang, P. C., Russell, C., Nesic, Z., Lee, X., Chen, S. G., Staebler, R. and Novak, M. D. 1996. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology 2, 219-229.
    • Blanken, P. D. and Black, T. A. 2004. The canopy conductance of a boreal aspen forest, prince albert national park, Canada. Hydrological Processes 18, 1561-1578.
    • Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M. and Oleson, K. W. 2003. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Global Change Biology 9, 1543-1566.
    • Campbell, G. S. and Norman, J. M. 1998. An Introduction to Environmental Biophysics. Springer-Verlag, New York, 129-144.
    • Chen, W. J., Black, T. A., Yang, P. C., Barr, A. G., Neumann, H. H., Nesic, Z., Blanken, P. D., Novak, M. D., Eley, J., Ketler, R. J. and Cuenca, A. 1999a. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology 5, 41- 53.
    • Chen, J. M., Liu, J., Cihlar, J. and Goulden, M. L. 1999b. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling 124, 99-119.
    • Chen, W. J., Chen, J. and Cihlar, J. 2000a. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecological Modelling 135, 55-79.
    • Chen, W. J., Chen, J., Liu, J. and Cihlar, J. 2000b. Approaches for reducing uncertainties in regional forest carbon balance. Global Biogeochemical Cycles 14, 827-838.
    • Chen, J. M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S. G., White, H. P., Hall, R. J., Peddle, D. R., King, D. J., Trofymow, J. A., Swift, E., Van Der Sanden, J. and Pellikka, P. K.E. 2002. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment 80, 165-184.
    • Chen, J. M., Ju, W. M., Cihlar, J., Price, D., Liu, J., Chen, W. J., Pan, J. J., Black, A. and Barr, A. 2003. Spatial distribution of carbon sources and sinks in canada's forests. Tellus B 55, 622-641.
    • Chen, J. M., Chen, X. Y., Ju, W. M. and Geng, X. Y. 2005. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology 305, 15-39.
    • Cihlar, J., Xia, Q. H., Chen, J., Beaubien, J., Fung, K. and Latifovic, R. 1998. Classification by progressive generalization: a new automated methodology for remote sensing multichannel data. International Journal of Remote Sensing 19, 2685-2704.
    • Coles, N. A., Sivapalan, M., Larsen, J. E., Linnet, P. E. and Fahrner, C. K. 1997. Modelling runoff generation on small agricultural catchments: can real world runoff responses be captured? Hydrological Processes 11, 111-136.
    • Devito, K. J., Greed, I. F. and Fraser. 2005a. Controls on runoff from a partially harvested apsen-forested headwater catchment, Boreal Plain, Canada. Hydrological Processes 19, 3-25.
    • Devito, K. J., Greed, I., Gan, T., Mendoza, C., Petrone, R., Silins, U. and Smerdon, B. 2005b. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: id topography the last thing to consider? Hydrological Processes 19, 1705-1714.
    • D'odorico, P., Laio, F., Porporato, A. and Rodriguez-Iturbe, I. 2003. Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Advances in Water Resources 26, 59-70.
    • Dickinson, R. E., Sellers, A. H., Kennedy, P. J. and Wilson, M. F. 1986. Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model. NCAR Tech. Note TN-275, National Center for Atmosphere Research, Boulder, Colorado, USA.
    • Farquhar, G. D., Caemmerer, S. V. and Berry, J. A. 1980. A biochemicalmodel of photosynthetic CO2 assimilation in leaves of c-3 species. Planta 149, 78-90.
    • Fraser, C. J. D., Roulet, N. T. and Lafleur, M. 2001. Groundwater flow patterns in a large peatland. Journal of Hydrology 246, 142-154.
    • Friend, A. D., Stevens, A. K., Knox, R. G. and Cannell, M. G. R. 1997. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling 95, 249-287.
    • Frolking, S. E., Bubier, J. L., Moore, T. R., Ball, T., Bellisario, L. M., Bhardwaj, A., Carroll, P., Crill, P. M., Lafleur, P. M., Mccaughey, J. H., Roulet, N. T., Suyker, A. E., Verma, S. B., Waddington, J. M. and Whiting, G. J. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochemical Cycles 12, 115-126.
    • Frolking, S., Roulet, N. T., Moore, T. R., Richard, P. J. H., Lavoie, M. and Muller, S. D. 2001. Modeling northern peatland decomposition and peat accumulation. Ecosystems 4, 479-498.
    • Frolking, S., Roulet, N. T., Moore, T. R., Lafleur, P. M., Bubier, J. L. and Crill, P. M. 2002. Modeling seasonal to annual carbon balance of mer bleue bog, Ontario, Canada. Global Biogeochemical Cycles 16(3): DOI:10. 1029/2001GB001457.
    • Funk, D. W., Pullman, E. R., Peterson, K. M., Crill, P. M. and Billings, W. D. 1994. Influence of water-table on carbon-dioxide, carbonmonoxide, and methane fluxes from taiga bog microcosms. Global Biogeochemical Cycles 8, 271-278.
    • Gagnon, A. S. and Gough, W. A. 2002. Hydro-climatic trends in the Hudson Bay region, Canada. Canadian Water Resources Journal 27, 245-262.
    • Gorham, E. 1995. The biogeochemistry of northern petalands and its possible response to global warming. In: Biotic feedbacks in the global climatic system: will the warming feed the warming? (eds. G. M. Woodwell and F. T. Mackenzie). Oxford University Press, New York, 169-187.
    • Gough, W. A. and Wolfe, E. 2001. Climate change scenarios for Hudson Bay, Canada, from general circulation models. Arctic 54, 142-148.
    • Grayson, R. B., Western, A. W., Chiew, F. H. S. and Bloschl, G. 1997. Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resources Research 33, 2897-2908.
    • Griffis, T. J., Black, T. A., Morgenstern, K., Barr, A. G., Nesic, Z., Drewitt, G. B., Gaumont-Guay, D. and Mccaughey, J. H. 2003. Ecophysiological controls on the carbon balances of three southern boreal forests. Agricultural and Forest Meteorology 117, 53-71.
    • Harris, P. P., Huntingford, C., Cox, P. M., Gash, J. H.C. and Malhi, Y. 2004. Effect of soil moisture on canopy conductance of amazonian rainforest. Agricultural and Forest Meteorology 122, 215-227.
    • Haxeltine, A. and Prentice, I. C. 1996. Biome3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10, 693-709.
    • Humphreys, E. R., Black, T. A., Ethier, G. J., Drewitt, G. B., Spittlehouse, D. L., Jork, E. M., Nesic, Z. and Livingston, N. J. 2003. Annual and seasonal variability of sensible and latent heat fluxes above a coastal douglas-fir forest, British Columbia, Canada. Agricultural and Forest Meteorology 115, 109-125.
    • Humphreys, E. R., Lafleur, P. M., Admiral, S. W. and Roulet, N. T. 2004. Contrasting the interannual variability in net ecosystem exchange of carbon dioxide in a northern peatland with the variability observed in northern forests. In: Proceedings of the 26th Conference on Agricultural and Forest Meteorology, August 23-27, Vancouver, BC, Canada. American Meteorology Society, Boston, MA, P1. 20, 5 pp.
    • Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E. and Schulze, E. D. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389-411.
    • Jarvis, P. G. 1976. Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 273, 593-610.
    • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncrieff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variation of carbon dioxide, water vapors, and energy exchanges of a boreal black spruce forest. Journal of Geophysical Research-Atmospheres 102, 28 953-28 966.
    • Ju, W. M. and Chen, J. M. 2005. Distribution of soil carbon stocks in canada's forests and wetlands simulated based on drainage class, topography and remotely sensed vegetation parameters. Hydrological Processes 19, 77-94.
    • Kljun, N., Black, T. A., Griffis, T. J., Barr, A. G., Gaumont-Guay, D., Morgenstern, K., McCaughey, J. H. and Nesic, Z. 2004. Net carbon exchange of three boreal forests during a drought. In: Proceedings of the 26th Conference on Agricultural and Forest Meteorology, August 23-27, Vancouver, BC, Canada. American Meteorology Society, Boston, MA, P4.5, 4 pp.
    • Kochy, M. and Wilson, S. D. 2001. Nitrogen deposition and forest expansion in the northern great plains. Journal of Ecology 89, 807-817.
    • Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T., Lenters, J. D., Young-Molling, C., Ramankutty, N., Norman, J. M. and Gower, S. T. 2000. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles 14, 795-825.
    • Lacelle, B. 1998. Canada's soil organic carbon database. In: Soil Processes and the Carbon Cycle (eds. R. Lal, M. Kimble, F. Follett and B. A. Stewart). CRC Press, Boca Raton, 93-101.
    • Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S. and Moore, T. R. 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles 17(2), 1036, DOI: 10. 1029/2002GB001983.
    • Letts, M. G., Roulet, N. T., Comer, N. T., Skarupa, M. R. and Verseghy, D. L. 2000. Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmosphere-Ocean 38, 141-160.
    • Lhomme, J. P., Elguero, E., Chehbouni, A. and Boulet, G. 1998. Stomatal control of transpiration: examination of monteith's formulation of canopy resistance. Water Resources Research 34, 2301-2308.
    • Liu, J., Chen, J. M., Cihlar, J. and Chen, W. 1999. Net primary productivity distribution in the boreas region from a process model using satellite and surface data. Journal of Geophysical Research 104(D22), 27 735-27 754.
    • Liu, J., Chen, J. M., Cihlar, J. and Chen, W. 2002. Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography 11, 115-129.
    • Lloyd, J. and Taylor, J. A. 1994. On the temperature-dependence of soil respiration. Functional Ecology 8, 315-323.
    • McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., More III, B. and Vorosmarty, C. J. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in northern America. Global Biogeochemical Cycles 6, 101-124.
    • Monteith, J. L. and Unsworth, M. H. 1990. Principles of Environmental Physics. Edward Arnold, London, 225-230.
    • Moore, T. R. and Knowles, R. 1989. The influence of water-table levels on methane and carbon-dioxide emissions from peatland soils. Canadian Journal of Soil Science 69, 33-38.
    • Moore, I. D., Burch, G. J. and Mackenzie, D. H. 1988. Topographic effects on the distribution of surface soil-water and the location of ephemeral gullies. Transactions of the American Society of Agriculture Engineering 31, 1098-1107.
    • Moore, T. R., Roulet, N. T. and Waddington, J. M. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40, 229-245.
    • Neilson, R. P. 1995. A model for predicting continental-scale vegetation distribution and water-balance. Ecological Applications 5, 362-385.
    • Neilson, R. P. and Marks, D. 1994. A global perspective of regional vegetation and hydrologic sensitivities from climatic-change. Journal of Vegetation Science 5, 715-730.
    • New, M., Hulme, M. and Jones, P. 1999. Representing twentieth-century space-time climate variability, Part I: development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate 12, 829-856.
    • New, M., Hulme, M. and Jones, P. 2000. Representing twentiethcentury space-time climate variability. part ii: development of 1901- 96 monthly grids of terrestrial surface climate. Journal of Climate 13, 2217-2238.
    • Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riechers, G. and Grulke, N. 1993. Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature 361, 520-523.
    • Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. 1987. Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society of America Journal 51, 1173-1179.
    • Parton, W. J., Scurlock, J. M.O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E. G., Kamnalrut, A. and Kinyamario, J. I. 1993. Observations and modeling of biomass and soil organic-matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7, 785-809.
    • Paul, K. I., Polglase, P. J., Smethurst, P. J., O'connell, A. M., Carlyle, C. J. and Khanna, P. K. 2004. Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agricultural and Forest Meteorology 121, 167-182.
    • Potter, C. S. 1997. An ecosystem simulation model for methane production and emission from wetlands. Global Biogeochemical Cycles 11, 495-506.
    • Potter, C. S. 1999. Terrestrial biomass and the effects of deforestation on the global carbon cycle-results from a model of primary production using satellite observations. Bioscience 49, 769-778.
    • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A. and Klooster, S. A. 1993. Terrestrial ecosystem production-a process model-based on global satellite and surface data. Global Biogeochemical Cycles 7, 811-841.
    • Potter, C., Davidson, E., Nepstad, D. and De Carvalho, C. R. 2001. Ecosystem modeling and dynamic effects of deforestation on trace gas fluxes in amazon tropical forests. Forest Ecology and Management 152, 97-117.
    • Qiu, Y., Fu, B. J., Wang, J. and Chen, L. D. 2001. Soil moisture variation in relation to topography and land use in a hillslope catchment of the loess plateau, china. Journal of Hydrology 240, 243-263.
    • Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., Grace, A. L., Moore, B. and Vorosmarty, C. J. 1991. Potential net primary productivity in South-Americaapplication of a global-model. Ecological Applications 1, 399-429.
    • Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W. and Veldhuis, H. 1998. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochemical Cycles 12, 687-701.
    • Ro, C., Vet, R., Ord, D. and Holloway, A. 1995. National Atmospheric Chemistry Database 1993 annual report, acid precipitation in eastern Northern America. Atmospheric Environment Service, Environment Canada.
    • Rodriguez-Iturbe, I. 2000. Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research 36, 3-9.
    • Roulet, N. T., Munro, D. S. and Mortsch, L. 1997. Wetlands. In: The Surface Climate of Canada (eds. W. G. Baily, T. R. Oke, W. R. Rouse). McGill-Queen's University Press, Montreal, 149-171.
    • Running, S. W. and Gower, S. T. 1991. Forest-BGC, a general-model of forest ecosystem processes for regional applications, II, dynamic carbon allocation and nitrogen budgets. Tree Physiology 9, 147- 160.
    • Saulnier, G. M., Obled, C. and Beven, K. 1997. Analytical compensation between dtm grid resolution and effective values of saturated hydraulic conductivity within the topmodel framework. Hydrological Processes 11, 1331-1346.
    • Saxton, K. E., Rawls, W. J., Romberger, J. S. and Papendick, R. I. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50, 1031-1036.
    • Schut, P., Shields, J., Tarnocai, C., Coote, D. and Marshall, I. 1994. Soil Landscapes of Canada-an environmental reporting tool. In: Canadian Conference on GIS Proceedings, 6-10 June, Ottawa, 953- 965.
    • Sellers, P. J., Mintz, Y., Sud, Y. C. and Dalcher, A. 1986. A simple biosphere model (SiB) for use within general-circulation models. Journal of the Atmospheric Sciences 43, 505-531.
    • Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D. and Bounoua, L. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. part I. model formulation. Journal of Climate 9, 676-705.
    • Silvola, J., Alm, J., Ahlholm, U., Nykanen, H. and Martikainen, P. J. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology 84, 219-228.
    • Soegaard, H. and Nordstroem, C. 1999. Carbon dioxide exchange in a high-arctic fen estimated by eddy covariance measurements and modelling. Global Change Biology 5, 547-562.
    • Soulis, E. D., Snelgrove, K. R., Kouwen, N., Seglenieks, F. and Verseghy, D. L. 2000. Towards closing the vertical water balance in canadian atmospheric models: coupling of the land surface scheme class with the distributed hydrological model watflood. Atmosphere-Ocean 38, 251-269.
    • Su, M., Stolte, W. J. and Van Der Kamp, G. 2000. Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model. Hydrological Processes 14, 2405-2422.
    • Tarnocai, C. 1998. The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Soil Processes and the Carbon Cycle (eds. R. Lal, M. Kimble, F. Follett and B. A. Stewart). CRC Press, Boca Raton, 81-92.
    • Thompson, S. L. and Pollard, D. 1995. A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part I: Present climate simulation. Journal of Climate 8, 732-761.
    • Thornton, P. E. and Running, S. W. 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agricultural and Forest Meteorology 93, 211-228.
    • Tolonen, K., Vasamder, H., Damman, A. W. H. and Clymo, R. S. 1992. Preliminary estimate of long-term c accumulation and loss in 25 boreal peatlands. Suo 43, 277-280.
    • Trumbore, S. E. and Harden, J. W. 1997. Accumulation and turnover of carbon in organic and mineral soils of the boreas northern study area. Journal of Geophysical Research 102(D4), 28 817-28 830.
    • Turunen, J., Roulet, N. T., Moore, T. R. and Richard, P. J.H. 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles 18, DOI: 10. 1029/2003GB002154.
    • Turunen, J., Tomppo, E., Tolonen, K. and Reinikainen, A. 2002. Estimating carbon accumulation rates of undrained mires in finlandapplication to boreal and subarctic regions. Holocene 12, 69-80.
    • Waddington, J. M., Griffis, T. J. and Rouse, W. R. 1998. Northern Canadian wetlands: net ecosystem co2 exchange and climatic change. Climatic Change 40, 267-275.
    • Western, A. W., Grayson, R. B., Bloschl, G., Willgoose, G. R. and Mcmahon, T. A. 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research 35, 797- 810.
    • White, A., Cannell, M. G.R. and Friend, A. D. 2000. The high-latitude terrestrial carbon sink: a model analysis. Global Change Biology 6, 227-245.
    • Wigmosta, M. S., Vail, L. W. and Lettenmaier, D. P. 1994. A distributed hydrology-vegetation model for complex terrain. Water Resources Research 30, 1665-1679.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from