Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gao, Yongqi; Drange, Helge; Bentsen, Mats (2003)
Publisher: Blackwell Munksgaard
Languages: English
Types: Article
Simulated distributions of the chlorofluorocarbons CFC-11 and CFC-12 are used to examine the ventilation of the North Atlantic Ocean in a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). Three simulations are performed: one with a diapycnal diffusivity Kd= 3 × 10−7/N m2 s−1 and an isopycnal diffusive velocity (i.e., diffusivity divided by the size of the grid cell)vtrac= 0.01 m s−1 (Exp. 1); Exp. 2 is as Exp. 1 but with Kd= 5 × 10−8/N m2 s−1 plus increased bottom mixing; and Exp. 3 is as Exp. 2 but with vtrac= 0.0025 m s−1. The main features of the simulated ventilation are strong uptake of the CFCs in the Labrador, Irminger and Nordic Seas, and a topographically aligned geostrophically controlled southward transport of CFC-enriched water in the Atlantic. It is found that the Overflow Waters (OW) from the Nordic Seas, the penetration of the western boundary currents, the ventilation of the subtropical surface waters, the vertical density stratification and the meridional overturning are all critically dependent on the applied isopycnal and diapycnal diffusivities, with Exp. 3 (Exp. 1) yielding the most (least) realistic results. Furthermore, it is the combined rather than the isolated effect of the isopycnal and diapycnal diffusivities that matter. For instance, the strength of the simulated Meridional Overturning Circulation (MOC) is similar in Exps. 1 and 3, but the simulated CFC-distributions are far too diffusive in Exp. 1 and fairly realistic in Exp. 3. It is demonstrated that the simulated distributions of transient tracers like the CFCs can be used to set the strength of the applied isopycnal mixing parameterization, a task that is difficult to conduct based on the simulated hydrography alone.DOI: 10.1034/j.1600-0889.2003.00068.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andrie, C., Ternon, J., Bourles, B., Gouriou, Y. and Oudot, C. 1999. Tracer distributions and deep circulation in the western tropical Atlantic during CITHER 1 and ETAMBOT cruises, 1993-1996. J. Geophys. Res. 104, C9, 21 195- 21 215.
    • Arakawa, A. and Lamb, V. 1977. Computational design of the basic processes of the UCLA General Circulation Model. Meth. Comput. Phys. 17, 174-265.
    • Bentsen, M., Evensen, G., Drange, H. and Jenkins, A. D. 1999. Coordinate transformation on a sphere using conformal mapping. Mon. Wea. Rev. 127, 2733-2740.
    • Bentsen, M. and Drange, H. 2000. Parameterizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. Tech. Rep. No. 4. Kjeller, Norway: Norwegian Institute for Air Research. (In RegClim, Regional Climate Development Under Global Warming General Technical Report)
    • Bentsen, M. 2002. Modelling ocean climate variability of the North Atlantic and the Nordic Seas,. Doctoral dissertation, University of Bergen, Bergen, Norway.
    • Bleck, R., Rooth, C., Hu, D. and Smith, L. T. 1992. Salinity-driven thermohaline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 1486- 1515.
    • Bleck, R., Dean, S., Keefe, M. O. and Sawdey, A. 1995. A comparison of data-parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean Model. Parallel Computing 21, 1695-1720.
    • Bower, A. and Hunt, H. 2000. Lagrangian observations of deep western boundary current in the north atlantic ocean. Part i: Large-scale pathways and spreading rates. J. Phys. Oceanogr. 30, 764-783.
    • Broecker, W. 1991. The great ocean conveyor. Oceanography 4, 79-89.
    • Bryan, F. 1987. Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr. 17, 970-985.
    • Bryden, H., Griffiths, M., Lavin, A., Millard, R., Parrilla, G. and Smethie, W. 1996. Decadal changes in water mass characteristics at 24◦N in the subtropical North Atlantic Ocean. J.Climate 9, 3162-3186.
    • Curry, R. and McCartney, M. S. 2001. Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr. 31, 3374-3400.
    • Dickson, R. R. and Brown, J. 1994. The production of North Atlantic Deep Water: Sources, rates and pathways. J. Geophys. Res. 99, C6, 12 319-12 341.
    • Dixon, K., Bullister, J., Gammon, R. and Stouffer, R. 1996. Examining a coupled climate model using CFC-11 as an ocean tracer. Geophys. Res. Lett. 23, 1957-1960.
    • Drange, H. and Simonsen, K. 1996. Formulation of airsea fluxes in the ESOP2 version of MICOMTech. Rep. No. 125. Edv. Griegsv. 3A, N-5059 Solheimsviken, Norway: Nansen Environmental and Remote Sensing Center.
    • Drange, H. and Bleck, R. 1997. Multi-dimensional forwardin-time and upstream-in-space based differencing for fluids. Mon. Wea. Rev. 125, 616-630.
    • Dutay, J., Bullister, J., Doney, S., Orr, J., Najjar, R., Caldeira, K., Campin, J., Drange, H., Follows, M., Gao, Y., Gruber, N., Hecht, M., Ishida, A., Joos, F., Lindsay, K., Madec, G., Marier-Reimer, E., Marshall, J., Matear, R., Monfray, P., Plattner, G., Sarmiento, J., Schlitzer, R., Slater, R., Totterdell, I., Weirig, M., Yamanaka, Y. and Yool, A. 2002. Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modelling 4, 89-120.
    • Eden, C. and Jung, T. 2001. North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation. J. Climate 14, 676-691.
    • England, M. and Holloway, G. 1998. Simulations of CFC content and water mass age in the deep North Atlantic. J. Geophys. Res. 103, C8, 15 885-15 901.
    • England, M. and Maier-Reimer, E. 2001. Using chemical tracers to assess ocean models. Rev. Geophys. 39, 29-70.
    • Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. and Young, G. S. 1996. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 101, C2, 3747-3764.
    • Friedrich, H. and Levitus, S. 1972. An approximation to the equation of state for sea water, suitable for numerical ocean models. J. Phys. Oceanogr. 2, 514-517.
    • Furevik, T., Bentsen, M., Drange, H., Johannessen, J. A. and Korablev, A. 2002. Temporal and spatial variability of the sea surface salinity in the Nordic Seas. J. Geophys. Res. 107, C12, 10-1-10-16.
    • Ganachaud, A. and Wunsch, C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453-457.
    • Gargett, A. 1984. Vertical eddy in the ocean interior. J. Marine. Res. 42, 359-393.
    • Gaspar, P. 1988. Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr. 18, 161-180.
    • Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C. and Zwally, C. L. P. H. J. 1992. Artic and Antarctic sea ice, 1978-1987. National Aeronautics and Space Administration, Washington, D.C., USA.
    • Gordon, A. 1986. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037-5046.
    • Hansen, B. and Østerhus, S. 2000. North Atlantic-Nordic Seas exchanges. Prog. Oceanogr. 45, 109-208.
    • Harder, M. 1996. Dynamik, Rauhigkeit und Alter des Meereises in der Arktis. Unpublished doctoral dissertation, Alfred-Wegner-Institut fu¨r Polar- ind Meeresforschung, Bremerhaven, Germany.
    • Hartman, D. L. 1994. Global physical climatorology. Academic Press, New York, 171-203.
    • Hasumi, H. and Suginohara, N. 1999. Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res. 104, C10, 23 367-23 374.
    • Hibler, W. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815-846.
    • Jones, E., Rudels, B. and Anderson, L. 1995. Deep waters of the Arctic Ocean: origins and circulation. Deep Sea Res. 42, 737-760.
    • Kalnay, E., et al. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteorol. Soc. 77, 437-471.
    • Ledwell, J. R. and Watson, A. J. 1993. Evidence for slow mixing across the pycnocline from an open ocean tracer-release experiment. Nature 364, 701- 703.
    • Ledwell, J. R., Watson, A. J. and Law, C. S. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res. 103, C10, 21 449-21 529.
    • Ledwell, J. R., Montgomery, E., Polzin, K., Laurent, L., Schmitt, R. and Toole, J. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179-182.
    • Levitus, S. and Boyer, T. P. 1994. World Ocean Atlas 1994, Volume 4: Temperature. NOAA Atlas NESDIS 4. Washington, D.C., USA.
    • Levitus, S., Burgett, R. and Boyer, T. P. 1994. World Ocean Atlas 1994, Volume 3: Salinity,. NOAA Atlas NESDIS 3. Washington, D.C., USA.
    • Manabe, S. and Stouffer, R. 1999. The role of thermohaline circulation in climate. Tellus 51B, 92-109.
    • McCartney, M. S. and Talley, L. D. 1982. The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr. 12, 1169-1188.
    • McDougall, T. and Dewar, W. 1998. Vertical mixing, cabbeling and thermobaricity in layered models. J. Phys. Oceanogr. 1458-1480.
    • Munk, W. and Wunsch, C. 1998. Abyssal recipes ii: Energetics of tidal and wind mixing. Deep Sea Res. 45, 1977- 2010.
    • New, A., Bleck, R., Jia, Y., Marsh, R., Huddleston, M. and Bernard, S. 1995. An ispoycnic model study of the North Atlantic. Part I: Model experiment. J. Phys. Oceanogr. 25, 2679-2711.
    • Nilsson, J. and Walin, G. 2001. Freshwater forcing as a booster of thermohaline circulation. Tellus 53A, 628-640.
    • Pickart, R. 1992. Water mass components of North Atlantic deep western boundary current. Deep Sea Res., Part A 39, 1553-1572.
    • Pickart, R., Smethie W., Jr, Lazier, J., Jones, E. and Jenkins, W. 1996. Eddies of newly formed upper Labrador Sea Water. J. Geophys. Res. 101, 20 711-20 726.
    • Rahmstorf, S. and Ganopolski, A. 1999. Long-term global warming scenarios computed with an efficient coupled climate model. Clim. Change 43, 353-367.
    • Roach, A., Aagaard, K., Pease, C., Salo, S., Weingartner, T., Pavlov, V. and Kulakov, M. 1995. Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res. 100, 18 443- 18 457.
    • Rudels, B., Jones, E., Anderson, L. and Kattner, G. 1994. On the intermediate depth waters of the Arctic Ocean. In The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume(eds. O. Johannessen, R. Muench and J. Overland)(Vol. 85, of AGU Geophysical Monograph, 33-46). American Geophysical Union, Washington, D.C.
    • Schmittner, A. and Weaver, A. 2001. Dependence of multiple climate states on ocean mixing parameters. Geophys. Res. Lett. 28, 1027-1030.
    • Schmitz Jr. W. J. 1995. On the interbasin-scale thermohaline circulation. Rev. Geophys. 33, 151-173.
    • Smethie, Jr, W. M., Fine, R., Putzka, A. and Jones, E. 2000. Tracing the flow of north atlantic deep water using chlorofluorocarbons. J. Geophys. Res. 105, C6, 14 297- 14 323.
    • Smolarkiewicz, P. K. 1984. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys. 54, 325-362.
    • Smolarkiewicz, P. K. and Clark, T. L. 1986. The multidimensional positive definite advection transport algorithm: Further development and applications. J. Comput. Phys. 67, 396-438.
    • Sun, S. and Bleck, R. 2001. Thermohaline circulation studies with an isopycnic coordinate ocean model. J. Phys. Oceanogr. 31, 2761-2782.
    • Toole, J. M., Polzin, K. L. and Schmitt, R. W. 1994. Estimates of diapycnal mixing in the abyssal ocean. Science 264, 1120-1123.
    • Walker, S., Weiss, R. and Salameh, P. 2000. Reconstructed histories of the annual mean atmospheric mole fractions for halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride. J. Geophys. Res. 105, C6, 14 285-14 296.
    • Wanninkhof, R. 1992. Relationship Between Wind Speed and Gas Exchange Over the Ocean. J. Geophys. Res. 97, C5, 7373-7382.
    • Warren, B. 1981. Deep circulation of the world ocean. In: Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel. (eds. B. A. Warren and C. Wunsch), MIT Press, New York, 6-41.
    • Weiss, R. F., Bullister, J. L., Gammon, R. H. and Warner, M. J. 1985. Atmospheric chlorofluoromethanes in the deep equatorial Atlantic. Nature 314, 608-610.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article