LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Keeling, Charles D.; Piper, Stephen C.; Whorf, Timothy P.; Keeling, Ralph F. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
An analysis is carried out of the longest available records of atmospheric CO2 and its 13C/12C ratio from the Scripps Institution of Oceanography network of fixed stations, augmented by data in the 1950s and 1960s from ships and ice floes. Using regression analysis, we separate the interhemispheric gradients of CO2 and 13C/12C into: (1) a stationary (possibly natural) component that is constant with time, and (2) a time-evolving component that increases in proportion to fossil fuel emissions. Inverse calculations using an atmospheric transport model are used to interpret the components of the gradients in terms of land and ocean sinks. The stationary gradients in CO2 and 13C/12C are both satisfactorily explained by ocean processes, including an ocean carbon loop that transports 0.5 PgC yr-1 southwards in the ocean balanced by an atmospheric return flow. A stationary northern land sink appears to be ruled out unless its effect on the gradient has been offset by a strong rectifier effect, which seems doubtful. A growing northern land sink is not ruled out, but has an uncertain magnitude (0.3–1.7 PgC yr-1 centred on year 2003) dependent on the rate at which CO2 from fossil fuel burning is dispersed vertically and between hemispheres.DOI: 10.1111/j.1600-0889.2010.00507.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andres, R. J., Marland, G. and Bischof, S. 1996a. Global and Latitudinal Estimates of δ13 C from Fossil-fuel Consumption and Cement Manufacture. Carbon Dioxide Information and Analysis Center, Oak Ridge, Tennessee.
    • Andres, R. J., Marland, G., Fung, I. Y. and Matthews, E. 1996b. A one degree by one degree distribution of carbon dioxide emissions from fossil-fuel consumption and cement manufacture, 1950-1990. Global Biogeochem. Cycles 10, 419-429.
    • Andres, R. J., Marland, G., Fung, I. Y. and Matthews, E. 1996c. One Degree by One Degree Patterns of Carbon Dioxide Emissions From Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990. Carbon Dioxide Analysis Center, Oak Ridge, Tennessee.
    • Andres, R. J., Marland, G., Boden, T. A. and Bischof, S. 2000. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991, and an estimate of their isotopic composition and latitudinal distribution. In: The Carbon Cycle (eds T. M. L. Wigley and D. S. Schimel). Cambridge University Press, Cambridge, 53-62.
    • Bacastow, R. B., Keeling, C. D. and Whorf, T. P. 1985. Seasonal Amplitude Increase in Atmospheric CO2 Concentration at Mauna Loa, Hawaii, 1959-1982. J. Geophys. Res.-Atmos. 90, 10 529-10 540.
    • Bevington, P. R. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book Co, New York, NY.
    • Boden, T. A., Marland, G. and Andres, R. J. 1996. Estimates of Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and gas flaring: 1950-1992. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1-600.
    • Bolin, B. and Keeling, C. D. 1963. Large-scale atmospheric mixing as deduced from seasonal and meridional variations of carbon dioxide. J. geophys. Res. 68, 3899-3920.
    • Conway, T. and Tans, P. P. 1999. Development of the CO2 latitude gradient in recent decades. Global Biogeochem. Cycles 13, 821-826.
    • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M. and co-authors. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis and co-authors). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Denning, A. S., Fung, I. Y. and Randall, D. 1995. Latitudinal gradient of atmospheric co2 due to seasonal exchange with land biota. Nature 376, 240-243.
    • Denning, A. S., Takahashi, T. and Friedlingstein, P. 1999. Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Tellus 51B, 249-253.
    • Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H. and co-authors. 2004. Evaluating global ocean carbon models: the importance of realistic physics. Global Biogeochem. Cycles 18, doi:10.1029/2003GB002150.
    • Doney, S. C., Lindsay, K., Fung, I. and John, J. 2006. Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation. J. Clim. 19, 3033-3054.
    • Fan, S. M., Blaine, T. L. and Sarmiento, J. L. 1999. Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since 1959. Tellus 51B, 863-870.
    • Gloor, M., Gruber, N., Sarmiento, J., Sabine, C. L., Feely, R. A. and co-authors. 2003. A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 30, art. no.-1010.
    • Gnanadesikan, A., Slater, R. D., Gruber, N. and Sarmiento, J. L. 2002. Oceanic vertical exchange and new production: a comparison between models and observations. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 49, 363-401.
    • Graven, H. D., Stephens, B. B., Guilderson, T. P., Campos, T. L., Schimel, D. S. and co-authors. 2009. Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2 : CO ratios from airborne measurements of Delta C-14, CO2 and CO above Colorado, USA. Tellus 61B, 536-546.
    • Gruber, N., Gloor, M., Fletcher, S. E. M., Doney, S. C., Dutkiewicz, S. and co-authors. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles 23, doi: 10.1029/2008GB003349.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626- 630.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2003. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B, 555-579.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Pak, B. C. and co-authors. 2004. Transcom 3 inversion intercomparison: model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles 18, doi:10.1029/2003GB002111.
    • Gurney, K. R., Mendoza, D. L., Zhou, Y. Y., Fischer, M. L., Miller, C. C. and co-authors. 2009. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 43, 5535-5541.
    • Heimann, M. and Keeling, C. D. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments. In: Aspects of Climate Variability in the Pacific and the Western Americas (ed. D. H. Peterson). American Geophysical Union, Washington, D.C., 237-275.
    • Heimann, M. and Monfray, P. 1989. Spatial and Temporal Variation of The Gas Exchange Coefficient for CO2: 1. Data Analysis and Global Validation. Max Planck Institute for Meteorology, Hamburg, 1-29.
    • Heimann, M. 1995. The global atmospheric tracer model TM2. In: Deutsches Klimarechenzentrum Technical Report. Hamburg, Germany, 1-53.
    • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M. and co-authors. 1987. The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux. Tellus 39B, 122-139.
    • Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. and Gloor, M. 2007. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results. Global Biogeochem. Cycles 21, doi:10.1029/2006GB002703.
    • James, M. E. and Kalluri, S. N. V. 1994. The Pathfinder AVHRR land data set-an improved coarse resolution data set for terrestrial monitoring. Int. J. Remote Sens. 15, 3347-3363.
    • Keeling, C. D. and Heimann, M. 1986. Meridional Eddy Diffusion Model of the transport of atmospheric carbon dioxide 2. Mean annual carbon cycle. J. geophys. Res.-Atmos. 91, 7782-7796.
    • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P. and co-authors. 1989a. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Aspects of Climate Variability in the Pacific and the Western Americas. (ed. D. H. Peterson). American Geophysical Union, Washington, D.C., 165-236.
    • Keeling, C. D., Guenther, P. R. and Whorf, T. P. 1989b. An Analysis of the Concentration of Atmospheric Carbon Dioxide at Fixed Land Stations, and Over the Oceans Based on Discrete Samples and Daily Averaged Continuous Measurements. Scripps Institution of Oceanography, La Jolla, CA, U.S.A., 1-451.
    • Keeling, C. D., Piper, S. C. and Heimann, M. 1989c. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Aspects of Climate Variability in the Pacific and the Western Americas (ed. D. H. Peterson). American Geophysical Union, Washington, D.C., 305-363.
    • Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P. and co-authors. 2001. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. In: Scripps Institution of Oceanography References Series. Scripps Institution of Oceanography, La Jolla, CA, 1-89.
    • Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P. and co-authors. 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. (eds J. R. Ehleringer, T. E. Cerling and M. D. Dearing). Springer, New York, 83-113.
    • Kelley, J. J. Jr, 1969. An analysis of carbon dioxide in the arctic atmosphere near Barrow, Alaska 1961 to 1967. Contract N00014-67-A0103-0007 NR 307-252, Scientific report of the United States Office of Naval Research, 172.
    • Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Fung, I. Y. and co-authors. 1996. Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Global Biogeochem. Cycles 10, 783-796.
    • Liss, P. S. and Merlivat,L. 1986. Air-sea exchange rates: introduction and synthesis. In: The Role of Air-Sea Exchange in Geochemical Cycling (ed. P. Buat-Menard). Reidel, Dordrecht, 113-127.
    • Marland, G., Boden, T. A. and Andres, R. J. 2005. Global, regional, and national fossil fuel CO2 emissions. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
    • Mikaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Gloor, M., Doney, S. C. and co-authors. 2007. Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem. Cycles 21, doi: 10.1029/2006GB002751.
    • Mikaloff Fletcher, S. E., Gruber, N. P. and Jacobson, A. R. 2003. Ocean Inversion Project How-to Document Version 1.0. Institution for Geophysics and Planetary Physics, The University of California, Los Angeles, CA, 18 pp.
    • Mook, W. G., Koopmans, M., Carter, A. F. and Keeling, C. D. 1983. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide 1. Results from land stations. J. geophys. Res.-Oceans and Atmospheres 88, 915-933.
    • Peylin, P., Bousquet, P., Le Quere, C., Sitch, S., Friedlingstein, P. and co-authors. 2005. Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochem. Cycles 19, doi:10.1029/2003GB002214.
    • Pinker, R. T. and Laszlo, I. 1992. Modeling surface solar irradiance for satellite applications on a global scale. J. appl. Meteorol. 31, 194-211.
    • Piper, S. C. and Stewart, E. F. 1996. A gridded global data set for daily temperature and precipitation for terrestrial biospheric modelling. Global Biogeochem. Cycles 10, 757-782.
    • Piper, S. C., Keeling, C. D., Heimann, M. and Stewart, E. F. 2001. Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000 II. In: A Three-Dimensional Tracer Inversion Model to Deduce Regional Fluxes. Scripps Institution of Oceanography, La Jolla, CA, USA, 1-57.
    • Robbins, P. E. and Bryden, H. L. 1994. Direct observations of advective nutrient and oxygen fluxes at 24 Degrees N in the Pacific Ocean. DeepSea Research Part I-Oceanographic Research Papers 41, 143-168.
    • Roedenbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919-1964.
    • Rotty, R. M. 1987. Estimates of seasonal variation in fossil fuel CO2 emissions. Tellus 39B, 184-202.
    • Sarmiento, J. L. and Sundquist, E. T. 1992. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589-593.
    • Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W. and co-authors. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732-1735.
    • Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N. and co-authors. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II-Topical Studies in Oceanography 49, 1601-1622.
    • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A. and co-authors. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II-Topical Studies in Oceanography 56, 554-577.
    • Taylor, J. A. and Orr, J. C. 2000. The natural latitudinal distribution of atmospheric CO2. Glob. Planet. Change 26, 375-386.
    • Weart, S. R. 2003. The Discovery of Global Warming. Harvard University Press, Cambridge, MA.
    • Weiss, R. F., Jahnke, R. A. and Keeling, C. D. 1982. Seasonal effects of temperature and salinity on the partial pressure of CO2 in sea-water. Nature 300, 511-513.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from