LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Žagar, Nedjeljka; Gustafsson, Nils; Källén, Erland (2004)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
In this study we question the relative importance of direct wind measurements in the tropics by investigating limits of four-dimensional variational assimilation (4D-Var) in the tropics when only wind or mass field observations are available. Typically observed equatorial wave motion fields (Kelvin, mixed Rossby-gravity and n = 1 equatorial Rossby waves) are assimilated in a non-linear shallow water model. Perfect observations on the full model grid are utilized and no background error term is used. The results illustrate limits of 4D-Var with only one type of information, in particular mass field information. First, there is a limit of information available through the internal model dynamics. This limit is defined by the length of the assimilation window, in relation to the characteristics of the motion being assimilated. Secondly, there is a limit related to the type of observations used. In all cases of assimilation of wind field data, two or three time instants with observations are sufficient to recover the mass field, independent of the length of the assimilation time window. Assimilation of mass field data, on the other hand, although capable of wind field reconstruction, is much more dependent on the dynamical properties of the assimilated motion system. Assimilating height information is less efficient, and the divergent part of the wind field is always recovered first and more completely than its rotational part.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andersson, E., Pailleux, J., The´paut, J.-N., Eyre, J., McNally, A., Kelly, G. and Courtier, P. 1994. Use of cloud-cleared radiances in three/four dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 120, 627-653.
    • Baker, W., Emmitt, G. D., Robertson, F., Atlas, R., Molinari, J., Bowdle, D., Paegle, J., Hardesty, R., Menzies, R., Krishnamurti, T., Brown, R., Post, M., Anderson, J., Lorenc, A. and McElroy, J. 1995. Lidarmeasured winds from space: a key component for weather and climate prediction. Bull. Am. Meteorol. Soc. 76, 869-888.
    • Barwell, B. R. and Bromley, R. A. 1988. The adjustment of numerical weather prediction models to local perturbations. Q. J. R. Meteorol. Soc. 114, 665-689.
    • Browning, G. L., Kreiss, H.-O. and Schubert, W. H. 2000. The role of gravity waves in slowly varying in time tropospheric motions near the equator. J. Atmos. Sci. 57, 4008- 4019.
    • Bube, K. and Ghil, M. 1981. Assimilation of asynoptic data and initialization problem. In: Dynamic Meteorology: Data assimilation methods (eds. L. Bengtsson, M., Ghil and E., Ka¨lle´n), Springer-Verlag, Berlin, 111- 138.
    • Cahn, A. 1945. An investigation of the free oscillations of a simple current system. J. Meteorol. 2, 113-119.
    • Clayson, C. A., Strahl, B. and Schrage, J. 2002. 2-3 day convective variability in the tropical estern acific. Mon. Wea. Rev. 130, 529- 548
    • Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic´, D., Hamrud, M., Hollingsworth, A., Rabier, F. and Fisher, M. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc. 124, 1783- 1807.
    • Daley, R. 1991. Atmospheric data analysis. Cambridge University Press, Cambridge, UK, 460 pp.
    • Daley, R. 1993. Atmospheric data analysis on the equatorial beta plane. Atmos.-Ocean 31, 421-450.
    • Daley, R. 1996. Generation of global multivariate error covariances by singular-value decomposition of the linear balance equation. Mon. Wea. Rev. 124, 2574-2587.
    • Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. R. Meteorol. Soc. 102, 405-418.
    • Ghil, M. 1980. The compatible balancing approach to initialization and four dimensional data assimilation. Tellus 32, 198-206.
    • Gilbert, J. C. and Lemare´chal, C. 1989. Some numerical experiments with variable storage quasi-Newton algorithms. Math. Prog. B25, 407-435.
    • Gill, A. E. 1982. Atmosphere-ocean dynamics. Academic Press, New York, 662 pp.
    • Gordon, C. T., Umscheid, L. and Miyakoda, K. 1972. Simulation experiments for determining wind data requirements in the tropics. J. Atmos. Sci. 29, 1064-1075.
    • Gustafsson, N. 1992. Use of a digital filter as weak constraint in variational data assimilation. Proc. ECMWF Workshop on Variational assimilation with special emphasis three-dimensional aspects, Reading, U.K., 9-12 November 1992, 327-338.
    • Gustafsson, N. 1998. The numerical scheme and lateral boundary conditions for the spectral Hirlam and its adjoint. Proc. ECMWF Seminar on Recent developments in numerical methods for atmospheric modelling, Reading, UK., 7-11 September 1998, 335-363.
    • Gustafsson, N., Berre, L., Ho¨rnquist, S., Huan, X.-Y., Lindskog, M., Navascue´s, B., Mogensen, K. S. and Thorsteinsson, S. 2001. Threedimensional variational data assimilation for a limited area model. Part I: General formulation and the background error constraint. Tellus 53A, 425- 446.
    • Haltiner, G. J. and Williams, R. T. 1980. Numerical prediction and dynamic meteorology. John Wiley and Sons, New York, 477 pp.
    • Hao, Z. and Ghil, M. 1994. Data assimilation in a simple tropical ocean model with wind stress errors. J. Phys. Ocean. 24, 2111-2128.
    • Haugen, J. E. and Machenhauer, B. 1993. A spectral limited-area model formulation with time-dependent lateral boundary conditions applied to the shallow-water equations. Mon. Wea. Rev. 121, 2618- 2630.
    • Hendon, H. H. 1986. Streamfunction and velocity potential representation of equatorially trapped waves. J. Atmos. Sci. 43, 3038-3042.
    • Holton, J. R. 1992. An introduction to dynamic meteorology, 3rd edn. Academic Press, New York, 511 pp.
    • Ingleby, N. B. 2001. The statistical structure of forecast errors and its representation in the Met Office Global 3-D Variational Data Assimilation Scheme. Q. J. R. Meteorol. Soc. 127, 209-231.
    • Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R. and Fiorino, M. 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247-267.
    • Le Dimet, F.-X. and Talagrand, O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A, 97- 110.
    • Matsuno, T. 1966. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44, 25-42.
    • Parrish, D. 1988. The introduction of Hough functions into optimum interpolation. Proc. Eighth Conf. on NWP, Am. Meteorol. Soc., Boston, Mass., 191-196.
    • Ricciardulli, L. and Garcia, R. R. 2000. The excitation of equatorial waves by deep convection in the NCAR community climate model (CCM3). J. Atmos. Sci. 57, 3461-3487.
    • Rossby, C. G. 1937. On the mutual adjustment of pressure and velocity distribution in certain simple current systems. J. Marine Res. 1, 15- 27.
    • Rossby, C. G. 1938. On the mutual adjustment of pressure and velocity distribution in certain simple current systems, II. J. Marine Res. 1, 239-263.
    • Scaife, A. A., Butchart, N., Warner, C. and Swinbank, R. 2002. Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci. 59, 1473- 1489.
    • Talagrand, O. 1981. A study of the dynamics of four-dimensional data assimilation. Tellus 33, 43-60.
    • Talagrand, O. and Courtier, P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc. 113, 1311-1328.
    • Wheeler, M. and Kiladis, G. N. 1999. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumberfrequency domain. J. Atmos. Sci. 56, 374-399.
    • Wheeler, M., Kiladis, G. N. and Webster, P. J. 2000. Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci. 57, 613-640.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from