LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Alban Farchi; Marc Bocquet; Yelva Roustan; Anne Mathieu; Arnaud Quérel (2016)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, radionuclides, non-local metric, Wasserstein distance, statistical indicators, Fukushima-Daiichi accident, verification, Wasserstein distance; Non-local metric; Statistical indicators; Verification; Fukushima-Daiichi accident; Radionuclides
The verification of simulations against data and the comparison of model simulation of pollutant fields rely on the critical choice of statistical indicators. Most of the scores are based on point-wise, that is, local, value comparison. Such indicators are impacted by the so-called double penalty effect. Typically, a misplaced blob of pollutants will doubly penalise such a score because it is predicted where it should not be and is not predicted where it should be. The effect is acute in plume simulations where the concentrations gradient can be sharp. A non-local metric that would match concentration fields by displacement would avoid such double penalty. Here, we experiment on such a metric known as the Wasserstein distance, which tells how penalising moving the pollutants is. We give a mathematical introduction to this distance and discuss how it should be adapted to handle fields of pollutants. We develop and optimise an open Python code to compute this distance. The metric is applied to the dispersion of cesium-137 of the Fukushima-Daiichi nuclear power plant accident. We discuss of its application in model-to-model comparison but also in the verification of model simulation against a map of observed deposited cesium-137 over Japan. As hoped for, the Wasserstein distance is less penalising, and yet retains some of the key discriminating properties of the root mean square error indicator.Keywords: Wasserstein distance, non-local metric, statistical indicators, verification, Fukushima-Daiichi accident, radionuclides(Published: 20 September 2016)Citation: Tellus B 2016, 68, 31682, http://dx.doi.org/10.3402/tellusb.v68.31682
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Environ. Radioact. 139, 212 225. DOI: http://dx.doi.org/10.
    • 1016/j.jenvrad.2014.02.013 Benamou, J.-D. and Brenier, Y. 2000. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375 393. DOI: http://dx.doi.org/10.
    • 1007/s002110050002 Blanchard, D. C. 1953. Raindrop size distribution in hawaiian rains. J. Meteorol. 10, 457 473. DOI: http://dx.doi.org/10.1175/ 1520-0469(1953)010 B0457:RSDIHR 2.0.CO;2 Bocquet, M. 2012. Parameter field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var.
    • Q. J. Roy. Meteorol. Soc. 138, 664 681. DOI: http://dx.doi.org/ 10.1002/qj.961 Briggs, W. M. and Levine, R. A. 1997. Wavelets and field forecast verification. Mon. Wea. Rev. 125, 1329 1341. DOI: http://dx.
    • doi.org/10.1175/1520-0493(1997)125B1329:WAFFV 2.0.CO;2 Butler, D. 2011. Radioactivity spreads in Japan. Nat. News. 471, 555 556. DOI: http://dx.doi.org/10.1038/471555a Chambolle, A. and Pock, T. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging.
    • J. Math. Imag. Vis. 40, 120 145. DOI: http://dx.doi.org/10.1007/ s10851-010-0251-1 Chang, J. C. and Hanna, S. R. 2004. Air quality model performance evaluation. Meteorol. Atmos. Phys. 87, 167 196.
    • DOI: http://dx.doi.org/10.1007/s00703-003-0070-7 Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G. and co-authors. 2011. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci.
    • Technol. 48, 1129 1134. DOI: http://dx.doi.org/10.1080/18811248.
    • 2011.9711799 Davis, C., Brown, B. and Bullock, R. 2006a. Object-based verification of precipitation forecasts. Part I: methodology and application to mesoscale rain areas. Mon. Wea. Rev. 134, 1772 1784. DOI: http://dx.doi.org/10.1175/MWR3145.1 Davis, C., Brown, B. and Bullock, R. 2006b. Object-based verification of precipitation forecasts. Part II: application to convective rain systems. Mon. Wea. Rev. 134, 1785 1795. DOI: http:// dx.doi.org/10.1175/MWR3146.1 Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M. and co-authors. 2015. World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J. Environ.
    • Radioact. 139, 172 184. DOI: http://dx.doi.org/10.1016/j.jenvrad.
    • 2013.09.014 Ebert, E. E. 2008. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteorol. Appl. 15, 51 64. DOI: http://dx.doi.org/10.1002/met.25 Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T.
    • and co-authors. 2012. Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation. J. Environ. Radioact. 111, 18 27. DOI: http:// dx.doi.org/10.1016/j.jenvrad.2011.11.006 Gabay, D. and Mercier, B. 1976. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17 40. DOI: http://dx.doi.org/10.
    • 1016/0898-1221(76)90003-1 Gilleland, E., Ahijevych, D. A., Brown, B. G. and Ebert, E. E.
    • 2010a. Verifying forecasts spatially. Bull. Am. Meteorol. Soc. 91, 1365 1373. DOI: http://dx.doi.org/10.1175/2010BAMS2819.1 Gilleland, E., Lindstro¨ m, J. and Lindgren, F. 2010b. Analyzing the image warp forecast verification method on precipitation fields from the ICP. Weather Forecast. 25, 1249 1262. DOI: http://dx.
    • doi.org/10.1175/2010WAF2222365.1 Gro¨ ell, J., Que´ lo, D. and Mathieu, A. 2014. Sensitivity analysis of the modelled deposition of 137Cs on the Japanese land following the Fukushima accident. Int. J. Environ. Pollut. 55, 67 75. DOI: http://dx.doi.org/10.1504/ijep.2014.065906 Hoffman, R. N., Liu, Z., Louis, J.-F. and Grassoti, C. 1995.
    • 123, 2758 2770. DOI: http://dx.doi.org/10.1175/1520-0493(1995) 123 B2758:DROFE 2.0.CO;2 Jaenicke, R. 1982. Physical aspects of the atmospheric aerosol. In: Chemistry of the Unpolluted and Polluted Troposphere: Proceedings of the NATO Advanced Study Institute held on the Island of Corfu (eds. H. W. Georgii and W. Jaeschke). Greece, September 28 October 10, 1981, pp. 341 373. Springer Netherlands. DOI: http://dx.doi.org/10.1007/978-94-009-7918-5_14 Jylh a¨, K. 1991. Empirical scavenging coefficients of radioactive substances released from Chernobyl. Atmos. Env. 25A, 263 270.
    • DOI: http://dx.doi.org/10.1016/0960-1686(91)90297-K Kantorovich, L. V. 1942. On the translocation of masses. Dokl.
    • Akad. Nauk SSSR. 37, 199 201.
    • Katata, G., Chino, M., Kobayashi, T., Terada, H., Ota, M. and co-authors. 2015. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys. 15, 1029 1070.
    • DOI: http://dx.doi.org/10.5194/acp-15-1029-2015 Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y.
    • and co-authors. 2011. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi Nuclear Power Plant Disaster. J. Nucl. Sci. Technol. 48, 1349 1356. DOI: http://dx.
    • doi.org/10.1080/18811248.2011.9711826 Keil, C. and Craig, G. C. 2007. A displacement-based error measure applied in a regional ensemble forecasting system. Mon. Wea. Rev.
    • 135, 3248 3259. DOI: http://dx.doi.org/10.1175/MWR3457.1 Keil, C. and Craig, G. C. 2009. A displacement and amplitude score employing an optical flow technique. Weather Forecast.
    • 24, 1297 1308. DOI: http://dx.doi.org/10.1175/2009WAF2222 247.1 Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J., Ikarashi, S. and co-authors. 2011. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering centraleast Japan. Proc. Natl. Acad. Sci. U.S.A. 108, 19526 19529. DOI: http://dx.doi.org/10.1073/pnas.1111724108 Korsakissok, I., Mathieu, A. and Didier, D. 2013. Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study. Atmos. Env. 70, 267 279. DOI: http://dx.doi.
    • org/10.1016/j.atmosenv.2013.01.002 Laakso, L., Gro¨ nholm, T., Rannik, U¨ ., Kosmale, M., Fielder, V.
    • and co-authors. 2003. Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos.
    • Environ. 37, 3605 3613. DOI: http://dx.doi.org/10.1016/S1352- 2310(03)00326-1 Lack, S. A., Limpert, G. L. and Fox, N. I. 2010. An objectoriented multiscale verification scheme. Weather Forecast. 25, 79 92. DOI: http://dx.doi.org/10.1175/2009WAF2222245.1 Lions, P.-L. and Mercier, B. 1979. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964 979.
    • DOI: http://dx.doi.org/10.1137/0716071 Ma, X.-N., Trudinger, N. S. and Wang, X.-J. 2005. Regularity of potential functions of the optimal transportation problem. Arch.
    • Rat. Mech. Anal. 177, 151 183. DOI: http://dx.doi.org/10.1007/ s00205-005-0362-9 Marzban, C. and Sandgathe, S. 2010. Optical flow for verification.
    • Weather Forecast. 25, 1479 1494. DOI: http://dx.doi.org/10.
    • 1175/2010WAF2222351.1 Mathieu, A., Korsakissok, I., Qu e´lo, D., Gro¨ ell, J., Tombette, M.
    • and co-authors. 2012. Atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi nuclear power plant accident. Elements. 8, 195 200. DOI: http://dx.doi.org/10.2113/ gselements.8.3.195 MEXT (Ministry of Education, Culture, Sports, Science and Technology). 2011. Results of the fourth airborne monitoring survey by MEXT. Online at: http://radioactivity.nsr.go.jp/en/ contents/4000/3179/24/1270_1216.pdf Monge, G. 1781. Me´moire sur la the´orie des de´blais et des remblais.
    • Acade´ mie royale des sciences, Paris, pp. 666 704.
    • Morino, Y., Ohara, T. and Nishizawa, M. 2011. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011.
    • Geophys. Res. Lett. 38, L00G11. DOI: http://dx.doi.org/10.1029/ 2011GL048689 Mosca, S., Graziani, G., Klug, W., Bellasio, R. and Bianconi, R.
    • 1998. A statistical methodology for evaluation of long-range dispersion models: An application to the ETEX exercise. Atmos.
    • Environ. 32, 4307 4324. DOI: http://dx.doi.org/10.1016/S1352- 2310(98)00179-4 Papadakis, N., Peyre´ , G. and Oudet, E. 2014. Optimal transport with proximal splitting. SIAM J. Imag. Sci. 7, 212 238. DOI: http://dx.doi.org/10.1137/130920058 Pustelnik, N., Chaux, C. and Pesquet, J.-C. 2011. Parallel proximal algorithm for image restoration using hybrid regularization.
    • IEEE Trans. Image Process. 20, 2450 2462. DOI: http://dx.doi.
    • org/10.1109/TIP.2011.2128335 Que´ lo, D., Krysta, M., Bocquet, M., Isnard, O., Minier, Y. and co-authors. 2007. Validation of the Polyphemus platform on the ETEX, Chernobyl and Algeciras cases. Atmos. Environ.
    • 41, 5300 5315. DOI: http://dx.doi.org/10.1016/j.atmosenv.2007.
    • 02.035 Que´ rel, A., Lemaitre, P., Monier, M., Porcheron, E., Flossmann, A. I. and co-authors. 2014. An experiment to measure raindrop collection efficiencies: influence of rear capture. Atmos. Meas.
    • Tech. 7, 1321 1330. DOI: http://dx.doi.org/10.5194/amt-7-1321- 2014 Qu e´rel, A., Roustan, Y., Qu e´lo, D. and Benoit, J.-P. 2016. Hints to discriminate the choice of wet deposition models applied to an accidental radioactive release. Int. J. Environ. Pollut. 58, 268 279.
    • Roselle, S. J. and Binkowski, F. S. 1999. Cloud dynamics and chemistry. In: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality Modeling System (eds. D. W. Byun and J. K. S. Ching). U.S. Environmental Protection Agency, Washington, DC, USA, EPA/600/R 99/030.
    • Saito, K., Shimbori, T. and Draxler, R. 2015a. JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact. 139, 185 199. DOI: http://dx.doi.org/10.1016/j.jenvrad.2014.02.007 Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, S. and co-authors. 2015b. Detailed deposition density maps constructed by large-scale soil sampling for gammaray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 139, 308 319.
    • DOI: http://dx.doi.org/10.1016/j.jenvrad.2014.02.014 Sanada, Y., Sugita, T., Nishizawa, Y., Kondo, A. and Torii, T.
    • 2014. The aerial radiation monitoring in japan after the Fukushima Daiichi nuclear power plant accident. Progr. Nucl.
    • Sci. Technol. 76 80. DOI: http://dx.doi.org/10.15669/pnst.4.76 Saunier, O., Mathieu, A., Didier, D., Tombette, M., Que´ lo, D. and co-authors. 2013. An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys. 13, 11403 11421. DOI: http://dx.doi.org/10.5194/acpd-13-15567- 2013 Sekiyama, T. T., Kunii, M., Kajino, M. and Shimbori, T. 2015.
    • Horizontal resolution dependence of atmospheric simulations of the Fukushima nu clear accident using 15-km, 3-km, and 500-m grid models. J. Meteorol. Soc. Jpn. 93, 49 64. DOI: http://dx.
    • doi.org/10.2151/jmsj.2015-002 Steinhauser, G., Brandl, A. and Johnson, T. E. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ. 470 471, 800 817. DOI: http://dx.doi.org/10.1016/j.scitotenv.2013.10.029 Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F. and co-authors. 2012. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion.
    • Atmos. Chem. Phys. 12, 2313 2343. DOI: http://dx.doi.org/10.
    • 5194/acp-12-2313-2012 Terada, H., Katata, G., Chino, M. and Nagai, H. 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact. 112, 141 154.
    • DOI: http://dx.doi.org/10.1016/j.jenvrad.2012.05.023 Villani, C. 2008. Optimal Transport: Old and New. Vol. 338.
    • Springer-Verlag, Berlin. DOI: http://dx.doi.org/10.1007/978-3- 540-71050-9 Wackernagel, H. 2003. Multivariate Geostatistics. 3rd ed. SpringerVerlag, Berlin. DOI: http://dx.doi.org/10.1007/978-3-662-05294-5 Winiarek, V., Bocquet, M., Duhanyan, N., Roustan, Y., Saunier, O. and co-authors. 2014. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ. 82, 268 279. DOI: http://dx.doi.
    • org/10.1016/j.atmosenv.2013.10.017 Winiarek, V., Bocquet, M., Saunier, O. and Mathieu, A. 2012.
    • Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J. Geophys. Res. 117, D05122. DOI: http://dx.doi.org/10.1029/2011JD016932 Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S. and co-authors. 2011. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. U.S.A. 108, 19530 19534. DOI: http://dx.doi.org/10.1073/pnas.1112058108 Zhang, L., Gong, S., Padro, J. and Barrie, L. 2001. A sizesegregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 35, 549 560. DOI: http://dx.
    • doi.org/10.1016/S1352-2310(00)00326-5
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article