LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
HU, Y.; STAMNES, K. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics
A radiative–convective model was developed to investigate the sensitivity of climate to cloud optical properties and the related feedback processes. This model demonstrates that the Earth's surface temperature increases with cloud optical depth when the clouds are very thin but decreases with cloud optical depth when the cloud shortwave (solar) radiative forcing is larger than the cloud longwave (terrestrial) radiative forcing. When clouds are included in the model, the magnitude of the greenhouse effect due to a doubling of the CO2 concentration varies with the cloudoptical depth: the thicker the clouds, the weaker the greenhouse warming. In addition, a small variation in the cloud droplet size has a larger impact on the equilibrium state temperature in the lower atmosphere than the warming caused by a doubling of the CO2 concentration: a 2% increase in the average cloud droplet size per degree increase in temperature doubles the warming caused by the doubling of the CO2 concentration. These findings suggest that physically reliable correlations between the cloud droplet size and macrophysical meteorological variables such as temperature, wind and water vapor fields are needed on a global climate scale to assess the climate impact of increases in greenhouse gases.DOI: 10.1034/j.1600-0889.2000.00993.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Albrecht, B. A. 1989. Aerosols, cloud microphysics and fractional cloudiness. Science 245, 1227-1230.
    • Betts, A. K. and Harshvardhan, 1987. Thermodynamic constraint on the cloud liquid water feedback in climate models. J. Geophys. Res. 92, 8483-8485.
    • Cess, R. D. and Vulis, I. L. 1989. Inferring surface solar absorption from broadband satellite measurements. J. Climate 2, 974-985.
    • Cess, R. D. et al. 1989. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science 245, 513-516.
    • Cess, R. D., Dutton, E. G., Deluisi, J. J. and Jiang, F. 1991. Determining surface solar absorption from broadband satellite measurements for clear skies: comparison with surface measurements. J. Climate 4, 236-247.
    • Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V. and Kwon, T. Y. 1992. Interpretation of seasonal cloud-climate interactions using ERBE data. J. Geophys. Res. 97, 7613-7617.
    • Charlock, T. P. 1982. Cloud optical feedback and climate stability in a radiative-convective model. T ellus 34, 245-254.
    • Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G. 1987. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655-661.
    • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E. and Hofmann, D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
    • Chertock, B., Frouin, R. and Somerville, R. C. J. 1991. Global monitoring of net solar irradiance at the ocean surface. J. Climate 4, 639-650.
    • Chou, M.-D. 1991. The derivation of cloud parameters from satellite measured radiances for use in surface radiation calculation. J. Atmos. Sci. 48, 1549-1559.
    • Curry, J. A., Ebert, E. E. and Schramm, J. L. 1993. Impact of clouds on the surface radiation balance of the arctic ocean. Meteor. Atmos. Phys. 51, 197-217.
    • Harrison, E. F. et al. 1990. Seasonal variation of cloud radiative forcing derived from the ERBE. J. Geophys. Res. 95, 18687-18703.
    • Hu, Y. X. and Stamnes, K. 1993. An accurate parameterization of cloud radiative properties suitable for climate modeling. J. Climate 6, 728-742.
    • Li, Z. and Leighton, H. G. 1993. Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res. 98, 4919-4930.
    • Liou, K.-N., Ou, S. C. S. and Lu, P. J. 1985. Interactive cloud formation and climatic temperature perturbation. J. Atmos. Sci. 42, 1969-1981.
    • Manabe, S. and Wetherald, R. T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241-259.
    • Mitchell, J. F. B., Senior C. A. and Ingram W. J. 1989. CO2 and climate: a missing feedback? Nature 341, 132-134.
    • Paltridge, G. W. 1980. Maximum entropy and climate. Quart. J. R. Meteor. Soc. 106, 895-899.
    • Penner, J. E., Dickinson, R. E. and O'Neil, C. A. 1992. EVects of aerosol from biomass burning on the global radiation budget. Science 256, 1432-1434.
    • Pinker, R. T. and Tarpley, J. D. 1988. The relationship between the planetary and surface net radiation: an update, J. Appl. Meteor. 27, 957-964.
    • Platt, C. M. R. 1989. The role of cloud microphysics in high-cloud feedback eVects on climate change. Nature 341, 428-429.
    • Ramanathan, V. 1987. The role of earth radiation budget studies in climate and general circulation research. J. Geophys. Res. 92, 4075-4095.
    • Ramanathan, V. 1987. The role of earth radiation budget studies in climate and general circulation research. J. Geophys. Res. 92, 4075-4095.
    • Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E. and Hartmann, D. 1989. Cloud radiative forcing and climate: results from the ERBE. Science 243, 57-63.
    • Ramanathan, V. and Collins, W. 1992. Thermostat and global warming. Nature 357, 649.
    • Roeckner, E., Schlese, U., Biecamp, J. and Loewe, P. 1987. Cloud optical depth feedbacks and the climate modeling. Nature 329, 138-140.
    • Schmetz, J. 1993. Relationship between solar net radiative fluxes at the top of the atmosphere and at the surface. J. of Atmos. Sci. 50, 1122-1132.
    • Schneider, S. H. 1972. Clouds and climate. J. of Atmos. Sci. 29, 1413-1422.
    • Shaw, G. E. 1983. Bio-controlled thermostasis involving the sulfur cycle. Climate Change 5, 297-303.
    • Shaw, G. E., Slinn, G. N. and Preining, O. 1992. Climate cooled by particles and clouds? Atmos. Environ. 26, 522-523.
    • Slingo, A. 1990. Sensitivity of the earth's radiation budget to changes in low clouds. Nature 343, 49-51.
    • Smith, R. N. B. 1990. A scheme for predicting layer clouds and their water content in a GCM. Quart. J. R. Meteor. Soc. 116, 435-460.
    • Somerville, R. C. and Remer, L. A. 1984. Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res. 89, 9668-9672.
    • Stamnes, K., Tsay, S.-C., Wiscombe, W. and Jayaweera, K. 1988. Numerically stable algorithm For discreteordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27 2502-2509.
    • Stephens, G. L. and Webster, P. J. 1979. Sensitivity of radiative forcing to variable cloud and moisture. J. Atmos. Sci. 36 1542-1556.
    • Sundqvist, H., 1978. A parameterization scheme for nonconvective condensation including prediction of cloud water content. Quart. J. R. Meteor. Soc. 104 677-690.
    • Suzuki, T., Tanaka, M. and Nakajima, T. 1993. The microphysical feedback of cirrus cloud in climate change. J. Meteor. Soc. Japan 71, 701-713.
    • Tsay, S.-C., Stamnes, K. and Jayaweera, K. 1989. Radiative energy budget in the cloudy and hazy arctic. J. Atmos. Sci. 46, 1002-1018.
    • Twomey, S. A. 1978. Atmospheric aerosols. Elsevier, North Holland.
    • Wang, W.-C., Rossow, W. B. Yao, M.-S. and Wolfson, M. 1981. Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback. J. Atmos. Sci. 38, 1167-1178.
    • Wetherald, R. T. and Manabe, S. 1988. Cloud feedback processes in a general circulation model. J. Atmos. Sci. 45, 1397-1415.
    • Wigley, T. M. L. 1991. Cloud microphysics and the climate eVect. Nature 349, 503-506.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from