LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Oleg V. Mikhailov (2014)
Publisher: Taylor & Francis Group
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: self-assembly, Review Article, nanoparticles, coordination compounds, TP1-1185, nanotechnology, macrocyclic metal chelate, Chemical technology, nanotechnology; nanoparticles; coordination compounds; self-assembly; macrocyclic metal chelate
This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis.Keywords: nanotechnology; nanoparticles; coordination compounds; self-assembly; macrocyclic metal chelate(Published: 7 February 2014)Citation: Nano Reviews 2014, 5: 21485 - http://dx.doi.org/10.3402/nano.v5.21485
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Tokso¨ z S, Guler MO. Self-assembly peptidic nanostructures. Nano Today 2009; 4: 458 69.
    • 2. Zhang C, Wang W, Goebl J, Yiu Y. Self-template synthesis of hollow nanostructures. Nano Today 2009; 4: 494 507.
    • 3. Gebauer D, Co¨ lfen H. Prelimination clusters and non-classical nucleation. Nano Today 2011; 6: 564 84.
    • 4. Gong J, Li G, Tang Z. Self-assembly of noble metal nanocrystals: fabrication, optical property, and applications. Nano Today 2012; 7: 564 85.
    • 5. Szarko JM, Guo J, Rolczynski BS, Chen LX. Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices. Nano Rev 2011; 2: 7249.
    • 6. Xavier PL, Chaudhari K, Baksi A, Pradeep T. Proteinprotected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano Rev 2012; 3: 14767.
    • 7. Gerbeleu NV, Arion VB. Template synthesis of macrocyclic compounds. Kishineu: Shtiintsa; 1990. 373 p.
    • 8. Lehn JM. Supramolecular chemistry: concepts and perspectives. Weinheim: Wiley; 1995.
    • 9. Gerbeleu NV, Arion VB, Burgess J. Template synthesis of macrocyclic compounds. Weinheim: Wiley; 1999. 565 p.
    • 10. Garnovskii AD, Vasil'chenko VS, Garnovskii DA. Contemporary topics of the synthesis of metal complexes: the main ligands and techniques. Rostov: LaPO; 2000. 355 p.
    • 11. Rodriguez-Morgade S, Hanack M. Synthesis, Separation and Characterization of the Structural Isomers of Octa-tertButylphthalocyanines and Dienophilic Phthalocyanine Derivatives. Chem Eur J 1997; 3: 1042 6.
    • 12. In: Leznoff CC, Lever ABP, eds. Phthalocyanines. Properties & applications, Vol. 1 4. Weinheim: Verlag Chemie; 1989 1996.
    • 13. In: Wird AG, Courts A, eds. The science and technology of gelatin. New York: Academic Press; 1977. 564 p.
    • 14. In: Kargin VA, ed. Encyclopedia of polymers, Vol. 1. Moscow: Soviet Encyclopedia; 1972. pp. 595 596.
    • 15. In: Kabanov VA, ed. Encyclopedia of polymers, Vol. 3. Moscow: Soviet Encyclopedia; 1977. pp. 24 35.
    • 16. Ramachandran GN. Treatise on Collagen. In: Chemistry of Collagen, Vol. I. New York: Academic press; 1967, pp. 187 8.
    • 17. Boedker H, Doty P. A study of gelatin molecules, aggregates and gels. J Phys Chem 1954; 58: 968 83.
    • 18. James TH, Mees CE. The theory of the photographic process. New York: Macmillan; 1972. pp. 63 91.
    • 19. James TH. The theory of the photographic process. New York: Macmillan; 1977. pp. 55 80.
    • 20. In: Cox RJ, ed. Photographic gelatin, Vol. I. London: Academic Press; 1972. 575 p.
    • 21. In: Cox RJ, ed. Photographic gelatin, Vol. I. London: Academic Press; 1976. pp. 131 40.
    • 22. Veis A, Anesey J, Cohen J. The long range reorganization of gelatin to the collagen structure. Arch Biochem Biophys 1961; 94: 20 31.
    • 23. Veis A, Drake MP. The Introduction of Intramolecular Covalent Cross-linkages into Ichthyocol Tropocollagen with Monofunctional Aldehydes. J Biol Chem 1963; 238: 2003 11.
    • 24. Rich A, Crick FHC. The structure of collagen. Nature 1955; 176: 915 6.
    • 25. Cowan PM, McGavin S, North ACT. The polypeptide chain configuration of collagen. Nature 1955; 176: 1062 6.
    • 26. Ferry JD. Protein gels. In: Advances in protein chemistry. New York: Academic Press; 1948. pp. 1 78.
    • 27. Chen JM, Kung CE, Feairheller SE, Brown EM. An energetic evaluation of a ''Smith'' collagen microfibril model. J Protein Chem 1991; 10: 535 52.
    • 28. Fridman R, Fuerst TR, Bird RE, Hoyhtya M, Oelkuct M, Kraus S, et al. Domain structure of human 72-kDa gelatinase/ type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J Biol Chem 1992; 267: 15398 405.
    • 29. Banyai L, Tordai H, Patthy LJ. Structure and DomainDomain Interactions of the Gelatin-binding Site of Human 72-Kilodalton Type IV Collagenase (Gelatinase A, Matrix Metalloproteinase 2). J Biol Chem 1996; 271: 12003 8.
    • 30. Tordai H, Patthy L. The gelatin-binding site of the second type-II domain of gelatinase A/MMP-2. Eur J Biochem 1999; 259: 513 8.
    • 31. Caldararu H, Timmins GS, Gilbert BC. The structure of gelatin-water/oil microemulsion sols and gels. An EPR spinprobe and spin-labelling study. Phys Chem Chem Phys 1999; 1: 5689 95.
    • 32. In: Phillips GO, Williams PA, eds. Handbook of hydrocolloids. London: Woodhead; 2000. pp. 1 27.
    • 33. Lin W, Yan L, Mu C, Li W, Zhang M, Zhu O. Effect of pH on gelatin self-association investigated by laser light scattering and atomic force microscopy. Polym Int 2002; 51: 233 8.
    • 34. Pickford AR, Potts JR, Bright JR, Han I, Campbell ID. Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Structure 1997; 5: 359 70.
    • 35. Gehrmann ML, Douglas JT, Banyai L, Tordai H, Patthy L, Llinas M. Modular Autonomy, Ligand Specificity, and Functional Cooperativity of the Three In-tandem Fibronectin Type II Repeats from Human Matrix Metalloproteinase 2. J Biol Chem 1994; 279: 46921 30.
    • 36. Trexler M, Briknarova K, Gehrmann M, Llinas M, Patthy L. Peptide Ligands for the Fibronectin Type II Modules of Matrix Metalloproteinase 2 (MMP-2). J Biol Chem 2003; 278: 12241 6.
    • 37. Groome RJ, Clegg FG. Photographic gelatin. London: Focal Press; 1965. pp. 35 40.
    • 38. Pratt WB, Hackney JF. Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Biochemistry 1971; 10: 3002 8.
    • 39. Hulmes DJS, Miller A, Parry DAD. Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol 1973; 79: 137 48.
    • 40. Ramachandran GN, Kartha G. Structure of Collagen. Nature 1955; 176: 593 7.
    • 41. Mikhailov OV, Khamitova AI. Mild template synthesis of nickel(II) and copper(II) chelates with an (N,N,S,S)-tetradentate ligand in metal hexacyanoferrate(II) immobilized matrix systems. Mendeleev Commun 1998; 3: 96 7.
    • 42. Mikhailov OV, Khamitova AI. Template-Guided Synthesis in Ni(II)-Dithiooxamide-Formaldehyde Systems in GelatinImmobilized Matrices. Russ J Phys Chem 1998; 72: 921 5.
    • 43. Mikhailov OV, Khamitova AI, Shigapova LS, Busygina TE. Soft template synthesis of (2,8-dithio-3,7-diaza-5-oxanonandithioamide-1,9)nickel(II) and (2,7-dithio-3,6-diazaoctadien3,5-dithioamide-1,8)nickel(II) using a nickel(II)hexacyanoferrate(II) gelatin-immobilized matrix. Trans Met Chem 1999; 24: 503 10.
    • 44. Mikhailov OV, Khamitova AI, Morozov VI. Template Synthesis of Cobalt(II,III), Nickel(II) and Copper(II) Macrocyclic Compounds with 2,8-Dithio-3,7-diaza-5-oxanonandithioamide1,9 in Gelatin-Immobilized Matrix. Heterocycl Comm 2000; 6: 137 42.
    • 45. Mikhailov OV. Low-temperature template synthesis of (2,8- dithio-3,7-diaza-5-oxanonandithioamide-1,9)nickel(II), (2,8-dithio3,7-diaza-4,6-dimethyl-5-oxanonan-dithioamide-1,9)nickel(II) and (4,4',6-trimethyl-2,8-dithio-3,7-diazanonen-6-dithio-amide-1,9) nickel(II) in thin films of nano-structured Ni2[Fe(CN)6]- gelatin-immobilized matrix materials. Int J Inorg Mater 2001; 3: 1053 61.
    • 46. Chachkov DV, Mikhailov OV. DFT B3LYP Calculation of the Spatial Structure of Co(II), Ni(II), and Cu(II) Template Complexes Formed in Ternary Systems Metal(II) IonDithiooxamide-Formaldehyde. Russ J Inorg Chem 2009; 54: 1952 6.
    • 47. Chachkov DV, Mikhailov OV. DFT B3LYP Calculation of Molecular Structures of (5.6.5.6) Macrotetracyclic FeIII and CoIII Complexes with 14-numbered Tetraazacyclic Ligand. Macroheterocycles 2010; 3: 161 7.
    • 48. Mikhailov OV, Khamitova AI. Complexing in the Cu(II)- dithiooxamide-formaldehyde ternary system in the copper (II)hexaceanoferrate(II) gelatin-immobilized matrix materials. Russ J Coord Chem 1999; 25: 795 9.
    • 49. Mikhailov OV. Soft template synthesis in copper(II)-dithiooxamide-methanal, copper(II)-dithiooxamide-ethanal and copper(II)-dithiooxamide-propanone triple systems in a copper(II) hexacyanoferrate(II) gelatin-immobilized matrix. Trans Met Chem 2000; 25: 552 8.
    • 50. Mikhailov OV, Khamitova AI. Mild template synthesis of [(2,8-dithio-3,7-diaza-5-oxanonan-1,9-dithioamido)aquahydroxo]cobalt(III) in the Co2[Fe(CN)6]-gelatin-immobilized matrices. Russ J Gen Chem 1998; 68: 1187 93.
    • 51. Mikhailov OV, Khamitova AI. Low-temperature template synthesis of macrocyclic cobalt(III) chelates with (N,N,S,S)- donor atomic ligands in the cobalt(II)-dithiooxamide-formaldehyde and cobalt(II)-dithiooxamide-glyoxal systems in the Co2[Fe(CN)6]-gelatin-immobilized matrices. Trans Met Chem 2000; 25: 26 31.
    • 52. Mikhailov OV, Khamitova AI. Mild template synthesis of [(2,8-dithio-3,7-diaza-5-oxanonan-1,9-dithioamido)aquahydroxo]cobalt(III) in the KCo[Fe(CN)6]-gelatin-immobilized matrix systems. Russ J Coord Chem 1998; 24: 807 10.
    • 53. Mikhailov OV, Chachkov DV. Mild template synthesis in the iron(III)-ethanedithioamide-1,2-formaldehyde triple system on a K[Fe2(CN)6]-gelatin-immobilized matrix. J Coord Chem 2009; 62: 1058 66.
    • 54. Mikhailov OV. Facile Template Synthesis in the System Ni(II)- Dithiooxamide-Acetaldehyde on Gelatin-immobilized Nickel(II) Hexacyanoferrate Matrices. Russ J Gen Chem 2002; 72: 1525 30.
    • 55. Mikhailov OV. Complexing of Nickel(II) with Dioximes in Ni2[Fe(CN)6] Gelatin-Immobilized Matrix Implants. Russ J Coord Chem 2002; 28: 352 7.
    • 56. Mikhailov OV. Mild Template Synthesis in the Ni(II)- Dithiooxamide-Acetone Ternary System in Ni2[Fe(CN)6] Gelatin-Immobilized Matrix Implants. Russ J Coord Chem 2002; 28: 32 8.
    • 57. Mikhailov OV. Low-Temperature Template Synthesis of [4,6, 6-Trimethyl-2,6-dithioxo-3,7-diazanon-4-en-bis(imidothioato)] copper(II) in Gelatin-Immobilized Cu2[Fe(CN)6] Matrix Materials. Russ J Gen Chem 2001; 71: 1676 81.
    • 58. Mikhailov OV, Kazymova MA, Shumilova TA, Vafina LR. Ni(II)- and Cu(II)-Containing Heterocyclic Compounds with 4,4',6-trimethyl-2,8-dithio-3,7-diazanonen-6-dithioamide-1,9 Obtained in Gelatin-Immobilized Matrices in the Template Synthesis Process. Heterocycl Comm 2000; 6: 357 62.
    • 59. Mikhailov OV, Chachkov DV. Self-assembly of supramolecular Ni(II) and Cu(II) metalmacrocyclic compounds with tetraazamacrocyclic ligand into gelatin-immobilized matrix. J Coord Chem 2010; 63: 4309 18.
    • 60. Chachkov DV, Mikhailov OV. Structure of the Template Complex Formed in the Co(III) Dithiooxamide Acetone Ternary System during Complex Formation in the KCoFe(CN)6- Gelatin Immobilized Matrices. Russ J Inorg Chem 2010; 55: 1243 7.
    • 61. Chachkov DV, Mikhailov OV. Quantum-chemical calculation of steric structure of the complexes formed at template synthesis in three-component systems of Co(II) [Ni(II), Cu(II)] iondithiooxamide- acetone. Russ J Gen Chem 2008; 78: 1849 61.
    • 62. Mikhailov OV. Mild template synthesis in the ternary system Co(II)-dithiooxamide-acetone in gelatin-immobilized Co2 [Fe(CN)6] matrix implants. Russ J Gen Chem 2008; 78: 82 9.
    • 63. Mikhailov OV, Kazymova MA. Soft template synthesis in the cobalt(III) - 1,2-diaminoethane-1,2-dithione-propanone triple system on a K[CoFe(CN)6]-gelatin-immobilized matrix. Trans Met Chem 2008; 33: 523 7.
    • 64. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE, Mannafov TG. Soft template synthesis of macrocyclic copper(II) chelates with 3,9-dithio-4,8-diaza-6-oxaundekandithioamide-1,11 in a Cu2[Fe(CN)6]-gelatin-immobilized matrix. Trans Met Chem 2003; 28: 592 4.
    • 65. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE. Mild template synthesis of copper(II)-containing complex with 4,4,6-trimethyl-2,3,7,8-tetraazanonen-6-dithiohydrazide-1,9 in gelatin-immobilized matrix. Trans Met Chem 2003; 28: 665 7.
    • 66. Mikhailov OV, Kazymova MA, Shumilova TA. Copper(II)- Heterocyclic Compounds with 4,5-dimethyl-2,3,6,7-tetraazaoctadien-3,5-dithiohydrazide-1,8 and 3,10-dithio-6,7,13,14-tetramethyl-1,2,4,5,8,9,11,12-octaazacyclotetradekatetraen-1,5, 7,12 Obtained in Gelatin-Immobilized Matrix as a Result of Template Synthesis. Heterocycl Comm 2003; 9: 61 4.
    • 67. Mikhailov OV, Kazymova MA, Shumilova TA. Mild template synthesis in the Cu(II)-dithiomalonamide-formaldehyde ternary system. Russ J Gen Chem 2008; 78: 258 63.
    • 68. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE. Template synthesis in the Cu(II)-dihydrazinomethanethioneacetone ternary system. Russ J Gen Chem 2009; 79: 24 30.
    • 69. Mikhailov OV, Kazymova MA, Chachkov DV. Template Synthesis into Gelatin-Immobilized Matrix as Perspective Method of Obtaining Supramolecular Macroheterocyclic Compounds. Macroheterocycles 2008; 1: 90 7.
    • 70. Chachkov DV, Mikhailov OV, Astaf'ev MN. Ab initio quantum chemical calculation of the structures of coordination compounds arising at template synthesis in ion M(II)-hydrazinomethanethiohydrazide-acetone (M Co, Ni, Cu) systems. J Struct Chem 2009; 50: 613 7.
    • 71. Chachkov DV, Mikhailov OV. The Relative Stability of Macrotricyclic Metal Complexes in M(II) Thiocarbohydrazide Acetone (M Mn, Fe, Co, Ni, Cu, Zn) Ternary Systems According to the Data of Quantum-Chemical Calculations. Russ J Phys Chem 2011; 85: 152 5.
    • 72. Chachkov DV, Mikhailov OV. Calculation of Geometric Parameters and Energies of Macrocyclic Metal Chelates in the Ternary M(II) Ion-Thiocarbamoylmethanamide-Formaldehyde Systems. Russ J Inorg Chem 2011; 56: 1935 42.
    • 73. Mikhailov OV. Low-Temperature Template Synthesis of Nickel-Containing Heterocyclic Compound with 2,8-Dithio3,5,7-triazanonandithioamide-1,9 in Gelatin-Immobilized Matrix. Heterocycl Comm 2001; 7: 79 82.
    • 74. Chachkov DV, Mikhailov OV. Calculation of Geometric Parameters of Macrocyclic Metal Chelates Formed by Template Synthesis in Tertiary Systems M(II) Ion-EthanedithioamideFormaldehyde-Ammonia. Russ J Inorg Chem 2011; 56: 223 31.
    • 75. Mikhailov OV, Chachkov DV. DFT Calculation of Space Structures of MII complexes with (N,N,N,N)-Coordinating Macroheterocyclic Ligand 1,8-dioxa-3,6,10,13-tetraazacyclotetradecanetetrathione-4,5,11,12. Macroheterocycles 2009; 2: 271 5.
    • 76. Chachkov DV, Mikhailov OV. Density Functional Theory Calculation of Molecular Structures of (5656)Macrotetracyclic 3d Metal Complexes with 4,12-Dithiooxo-1,8-dioxa-3,6,10,13- tetraazacyclotetradecanedione-5,11. Russ J Inorg Chem 2012; 57: 981 6.
    • 77. Mikhailov OV, Chachkov DV. Specifics of Molecular Structures of (565)Macrotricyclic 3d-Metal Chelates in the Ternary Systems M(II)-Hydrazine-carbothioamide-2,4-Pentanedione According to DFT Calculations. Russ J Inorg Chem 2013; 58: 548 53.
    • 78. Mikhailov OV, Khamitova AI, Morozov VI. Mild template synthesis of (2,7-dithio-3,6-diazaoctadien-3,5-dithioamide-1,8) nickel(II) and (2,7-dithio-3,6-diazaocta- dien-3,5-dithioamide-1,8) copper(II) in the Ni2[Fe(CN)6]- and Cu2[Fe(CN)6]-gelatinimmobilized matrix systems. Int J Inorg Mater 2001; 3: 161 7.
    • 79. Mikhailov OV, Khamitova AI, Mingalieva LS. Co(II,III), Ni(II) and Cu(II)-Containing Heterocyclic Compounds with 2,7-Dithio-3,6-diazaoctadien-3,5-dithioamide-1,8 Obtained in Gelatin-Immobilized Matrix by Template Synthesis Process. Heterocycl Comm 2001; 7: 359 63.
    • 80. Mikhailov OV, Khamitova AI. Template synthesis in the Ni(II)-dithiooxamide-glyoxal ternary system in gelatin-immobilized matrices. Russ J Coord Chem 2000; 26: 804 8.
    • 81. Mikhailov OV, Khamitova AI. Mild template synthesis of (2,7- dithio-3,6-diazaoctadien-1,8)copper(II) in the Cu2[Fe(CN)6]- gelatin-immobilized matrices. Russ J Coord Chem 1998; 24: 629 33.
    • 82. Mikhailov OV, Khamitova AI. Mild template synthesis in the CoII-dithiooxamide-glyoxal system in cobalt(II) hexacyanoferrate(II) gelatin-immobilized matrices. Russ Chem Bull 1999; 48: 1975 81.
    • 83. Mikhailov OV, Khamitova AI. Mild template synthesis Co(III)-dithioxamide-glyoxal in KCo[Fe(CN)6]-gelatin-immobilized matrix systems. Russ J Gen Chem 1997; 67: 1913 24.
    • 84. Mikhailov OV, Kazymova MA, Shumilova TA. Mild template synthesis of copper(II)-containing macrocyclic compounds in the Cu(II)-1,2-diaminoethanedithione-1,2-ethanedione-1,2 and Cu(II)-1,2-diaminoethanedithione-1,2-buhanedione-2,3 triple systems into Cu2[Fe(CN)6]-gelatin-immobilized implants. Trans Met Chem 2007; 32: 1056 60.
    • 85. Mikhailov OV, Khamitova AI, Kazymova MA. Soft template synthesis of cobalt (III) chelates with 2,8-dithio-3,7-diaza-5- oxanonandithioamide-1,9 and with 2,7-dithio-3,6-diazaoctadien3,5-dithioamide-1,8 into cobalt(III)hexacyanoferrate(II) gelatinimmobilized matrix materials. Trans Met Chem 2005; 30: 22 6.
    • 86. Chachkov DV, Mikhailov OV. Geometric Parameters and Energies of Molecular Structures of Macrocyclic Metal Chelates in the Ternary 3d M(II) Ion-EthanedithioamideEthanedial Systems According to Quantum_Chemical DFT B3LYP Calculations. Russ J Inorg Chem 2012; 57: 205 10.
    • 87. Mikhailov OV, Kazymova MA, Shumilova TA, Chmutova GA, Solovieva SE. Complexing processes in M(II)-dithiomalonamide-diacetyl triple systems (M Ni, Cu) in ethanol solution and in a metal(II) hexacyanoferrate(II) gelatinimmobilized matrix materials. Trans Met Chem 2005; 30: 18 21.
    • 88. Kazymova MA, Shumilova TA, Mikhailov OV, Solov'eva SE. Mild template synthesis of a macrocyclic Cu(II) chelate complex with 1,10-diamino-1,10-dimercapto-5,6-dimethyl-4,7- diazadeca-1,4,6,9-tetraene-3,8-dithione in Cu2[Fe(CN)6]- gelatin-immobilized matrix implants. Russ J Coord Chem 2008; 34: 102 5.
    • 89. Mikhailov OV, Kazymova MA, Shumilova TA, Solovieva SE. Template synthesis in M(II)-thiocarbohydrazide-diacetyl triple system (M Ni, Cu) in a metal (II)hexacyanoferrate(II) gelatin-immobilized matrix. Trans Met Chem 2004; 29: 732 6.
    • 90. Mikhailov OV, Chachkov DV. Molecular Structure and Thermodynamic Parameters of (5656)Macrotetracyclic Chelates in the 3d-Element(II) Ion-Hydrazinomethanethiohydrazide-2,3-Butanedione Ternary System According to Density Functional Quantum_Chemical Calculations. Russ J Inorg Chem 2013; 58: 174 9.
    • 91. Kazymova MA, Makarova LA, Mikhailov OV, Shumilova TA. Complex-forming ability of thiosemicarbazide to metal ions at the presence of carbonyl compound in solution and gelatin matrix, International Symposium on Advances Sciences in Organic Chemistry (Miskhor, Crimea, June 21 25, 2010). Abstracts, p. C-83.
    • 92. Chachkov DV, Mikhailov OV, Shamsutdinov TF. Specifics of Molecular Structures of (565)Macrotricyclic 3d-Metal Chelates in the Ternary Systems M(II)-Hydrazinecarbothioamide-2,4- Pentanedione According to DFT Calculations. Russ J Inorg Chem 2013; 58: 548 53.
    • 93. Batteraby AR. Biosynthesis of vitamin B12. Acc Chem Res 1986; 19: 147 52.
    • 94. Lawrance JA, Rossignoli M, Skelton BW, White AH. Metal Directed Synthesis Involving Formaldehyde and Nitroethane, and Crystal Structure of the Copper(II) Complex of the 14- Membered Macrocycle 6-Methyl-6-Nitro-1,4,8,11-Tetraazacyclotetradecane. Aust J Chem 1987; 40: 1441 9.
    • 95. Comba P, Curtis NF, Lawrance JA. Synthesis of a thirteenmembered tetraazamacrocycle employing formaldehyde and nitroalkanes directed by metal ions. Crystal structures of (12-methyl-12-nitro-1,4,7,10-tetraazacyclotridecane)copper(II) perchlorate and m-chloro-1,1,1-trichloro-2-(12-methyl-12-nitro1,4,7,10-tetraazacyclotridecane)dicopper(II). J Chem Soc Dalton Trans 1988; 497 502.
    • 96. Rosokha SV, Lampeka YD, Maloshtan IM. Synthesis and properties of a new series of bis(macrocyclic) dicopper(II,II), dinickel(II,II) and dinickel(III,III) complexes based on the 14- membered pentaaza unit. J Chem Soc Dalton Trans 1993; 631 6.
    • 97. Nanda KK, Addison AW, Butcher RT, McDevitt MR, Rao TN, Sinn E. Structural Demonstration of the Role of Ligand Framework Conformability in Copper(II)/Copper(I) Redox Potentials. Inorg Chem 1997; 36: 134 5.
    • 98. Tsymbal LV, Rosokha SV, Lampeka YD. Intramolecular hydrogen-bond formation in nickel(II) complexes with macrocyclic ligands containing non-coordinating nitrogen atom(s): new ditopic receptors differentiating hydrogensulfate and hydrogenphosphates. J Chem Soc Dalton Trans 1995; 16: 2633 7.
    • 99. Fabbrizzi L, Liccelli M, Manotti Lanfredi AM, Vassali O, Ugozzoli F. Template Synthesis of a Tetraaza Macrocycle Which Involves Benzaldehyde Rather Than Formaldehyde as a Building Block. Isolation and Structure Determination of the Open-Chain Schiff Base Intermediate Complex. Inorg Chem 1996; 35: 1582 9.
    • 100. Rudolf M, Dautz S, Jager EG. Macrocyclic [N42 ] Coordinated Nickel Complexes as Catalysts for the Formation of Oxalate by Electrochemical Reduction of Carbon Dioxide. J Am Chem Soc 2000; 122: 10821 30.
    • 101. Judele R, Dix MJ, Laschat S, Baro SA, Nimtz M, Menzel D, et al. Synthesis and Magnetic Properties of Novel Azamacrocyclic LnIII, CuII, FeIII, and SrII Complexes and Conformational Analysis of the Ligands. Z Anorg Allg Chem 2008; 634: 299 310.
    • 102. Trommel JS, Marzilli LG. Synthesis and DNA Binding of Novel Water-Soluble Cationic Methylcobalt Porphyrins. Inorg Chem 2001; 40: 4374 83.
    • 103. Lu X, Geng Z, Wang Y, Lu B, Kang J. Synthesis and characterization of novel macrocycles and their complexes with transition metal ions. Synth React Inorg Met Org Chem 2002; 32: 949 66.
    • 104. Garcia KW, Basinger J, Williams S, Hu C, Wagenknecht PS, Nathan LC. Effects of Steric Constraint on Chromium(III) Complexes of Tetraazamacrocycles. Chemistry and ExcitedState Behavior of 1,4-C2-Cyclam Complexes. Inorg Chem 2003; 42: 4885 90.
    • 105. Singh AK, Singh R, Saxena P. Macrocyclic metal complexes: synthesis and characterization of 14- and 16-membered tetraazamacrocyclic complexes of transition metals. Trans Met Chem 2004; 29: 867 9.
    • 106. Salavati-Niasari M. Synthesis and properties of 16-membered hexaazamacrocycles complexes of copper (II) produced by onepot template. Inorg Chem Comm 2004; 7: 698 700.
    • 107. Ali Khan T, Ghani SS, Shakir M, Tabassum S. Metal Ion Directed Synthesis of 12 and 14-Membered Tetraaza Macrocyclic Complexes and their Physico-Chemical Studies. Synth React Inorg Met Org Nano Met Chem 2005; 35: 509 13.
    • 108. Salavati-Niasari M, Davar F. In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14- membered hexaazamacrocyclic ligand ''3,10-dialkyldibenzo1,3,5,8,10,12-hexaazacyclotetradecane''. Inorg Chem Comm 2006; 9: 175 9.
    • 109. Dong G, Chun-qi Q, Chun-ying D, Ke-liang P, Qing-jin M. Synthesis and Structural Characterization of a Novel MixedValent CuIICuICuII Triangular Metallomacrocycle Using an Imine-Based Rigid Ligand. Inorg Chem 2003; 42: 2024 30.
    • 110. Fuliang Z, Liang S. Synthesis, Characterziation and SOD Activity of Manganese(II) Complexes with Aza-Macrocyclic Ligand. J Chem Crystallograph 2010; 40: 681 5.
    • 111. Mikhailov OV. The Theory of Heterogeneous Complexation on Immobilized Matrices of Hexacyanoferrates(II) 3dElements. Soviet J Coord Chem 1992; 18: 1008 17.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article