LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Caron, Louis-Philippe; Jones, Colin G. (2008)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Using the Yearly Genesis Parameter (YGP) and the Convective-YGP (CYGP), the main large-scale climatic fields controlling tropical cyclone (TC) formation are analysed and used to infer the number of TCs in a given basin using ERA40 reanalyses for the period 1983–2002. Both indices show a reasonable global number and spatial distribution of implied TCs compared to observations. Using the same approach, we evaluate TC activity in the last 20-yr period of the 20th century in an ensemble of nine Coupled Global Climate Model simulations submitted to the IPCC AR4. We extend this analysis backwards in time, through the 20th century, and find the ensemble derived CYGP suggests no trend in inferred TC numbers while the YGP, after applying a correction to compensate for its oversensitivity to sea surface temperature, suggests a small upward trend. Both indices give a fair geographical distribution of cyclogenesis. Finally, we assess future TC trends using three emission scenarios. Using the CYGP, which appears the most robust index for application to climate change, a small increase is predicted in the northwestern Pacific in the A1B and A2 scenarios.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bengtsson, L., Botzet, M. and Esch, M. 1996. Will greenhouse gasinduced warming over the next 50 years lead to a higher frequency and greater intensity of hurricanes? Tellus 48A, 57-73.
    • Bengtsson, L., Hagemann, S. and Hodges K. I. 2004. Can climate trends be calculated from reanalysis data? MPI Report 351.
    • Bengtsson, L., Hodges, K. I. and Esch, M. 2007a. Hurricane-type vorticies in a T159 resolution global model: comparisons with observations and reanalyses. Tellus 59A, 396-416.
    • Bengtsson, L., Hodges, K. I., Keenlyside, N., Kornblueh, L, Luo, J. and Ymagata, T. 2007b. How may tropical cyclones change in a warmer climate? Tellus 59A, 538-560.
    • Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J. and co-authors. 2007. Observations: oceanic climate change and sea level. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (eds S. Solomon, D. Qin, M., Manning, Z. Chen, M. Marquis and co-editors), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Camargo, S. J., Sobel, A. H., Barnston, A. G. and Emanuel, K. A. 2007. Tropical cyclone genesis potential index in climate models. Tellus 59A, 428-443.
    • Casey, K. and Cornillon, P. 2001. Global and Regional Sea Surface Temperature Trends. J. Climate 14, 3801-3818.
    • Chauvin, F., Royer, J.-F. and De´que´, M. 2006. Response of hurricanetype vortices to global warming as simlated by ARPEGE-Climat at high resolution. Climate Dyn. 27, 377-399.
    • Delworth, T. L., Brocoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V. and co-authors. 2006. GFDL's CM2 global coupled climate models. Part 1: formulation and simulation characteristics. J. Climate 9, 643-674.
    • Emanuel, K. A. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 326, 686-688.
    • Emanuel, K. A. and Nolan, D. 2004. Tropical cyclone activity and global climate. In: 26th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami, FL., 240-241.
    • Flato, G. M. 2005. The thrid generation coupled global climate model (CGCM3). www.cccma.ba.ca/modelscgcm2.shtml
    • Furevik, T., Bentsen, M., Drange, H., Kvamsto, N. and Sorteberg, A. 2003. Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn. 21, 27-51.
    • Gray, W. M. 1975. Tropical Cyclone Genesis. Dept. of Atmospheric Science Paper, No. 234, Colorado State University, Fort Collins, CO.
    • Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R. and Kowalczyk, E. A. 2002. The CSIRO Mk3 climate system model. Tech. Rep. 60, CSIRO Atmospheric Research, Aspendale.
    • Haarsma, R. J., Mitchel, J. F. B. and Senior, C. A. 1993. Tropical disturbances in a GCM. Climate Dyn. 8, 247-257.
    • Johns, T., Durman, C., Banks, H., Roberts, M., McLaren, A. and co-authors. 2004. HadGEM1 - model description and analysis of preliminary experiments for the IPCC Fourth Assesment Report. Tech. Rep. 55, U.K. Met Office, Exeter, UK.
    • Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J. and co-authors. 2006. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate 19, 3952-3972.
    • K-1 model developers. 2004. K-1 couple model (MIROC) description Tech. Rep. 1. Tech. Rep. 1, Center for Climate System Research, University of Tokyo, Tokyo.
    • Klotzbach, P. J. 2006. Trends in global tropical cyclone activity over the past twenty years. J. Geophys. Res. 33, L10805, doi:10.1029/2006GL025881.
    • Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S. and co-authors. 2005. The new IPSL Climate System Model: IPSLCM4. Tech. Rep., Institut Pierre Simon Laplace des Sciences de l'Environnement Global, IPSL, Case 101, 4 place Jussieu, Paris, France.
    • McAdie, C. J. and Rappaport, E. N. 1991. Diagnostic Report of the National Hurricane Center. Vol. 4, No. 1, NOAA, National Hurricane Center, Coral Gables, FL 45 pp.
    • McDonald, R. E., Bleaken, D. G., Cresswell, D. R., Pope, V. D. and Senior, C. A. 2005. Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Climate Dyn. 25, 19-36.
    • McTaggart-Cowan, R., Bosart, L. F., Davis, C. A., Atallah, E. H., Gyakum, J. R. and co-authors. 2006. Analysis of Hurricane Catarina (2004). Mon. Wea. Rev. 134(11), 3029-3053.
    • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T. and co-authors. 2007. The physical science basis. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis and co-editors), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Nakic´enovic´, N. and Swart, R. (eds) 2000. Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovermental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.
    • Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S. and co-authors. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-Mesh global atmospheric model: frequency and wind intensity analyses. J. Meteorol. Soc. Jpn. 84 (2), 259-276.
    • Royer, J.-F., Chauvin, F., Timbal, B., Araspin, P. and Grimal, D. 1998. A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim. Change 38, 307-343.
    • Ryan, B. F., Watterson, I. G. and Evans, J. L. 1992. Tropical cyclone frequencies inferred from Gray's yearly genesis parameter: validation of GCM tropical climates. Geophys. Res. Lett. 19 (18), 1831- 1834.
    • Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N. and co-authors. 2006. Present day atmospheric simulations using GISS Model E: comparison to in-situ, satellite and reanalysis data. J. Climate 19, 153-192.
    • Stowassser, M., Wang, Y. and Hamilton, K. 2007. Tropical cyclone changes in the western north Pacific in global warming scenario. J. Climate 20, 2378-2396.
    • Sugi, M., Noda, A. and Sato, N. 2002. Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteor. Soc Jpn. 80, 249-272.
    • Uppala, S. M., Ka˚llberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V. and co-authors. 2005. The ERA-40 reanalysis. Q. J. R. Meteor. Soc. 131, 2961-3012.
    • van Ulden, A. P. and van Oldenborgh G. J. 2006. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in central Europe. Atmos. Chem. Phys. 6, 863-881.
    • Walsh, K. and Watterson, I. G. 1997. Tropical cyclone-like vortices in a limited area model: comparison with observed climatology. J. Climate 10, 2240-2259.
    • Walsh, K., Fiorino, M., Landsea, C. W. and McInnis, K. L. 2007. Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalysis. J. Climate 20, 2307-2314.
    • Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J. Jr. Bettge, T. W. and co-authors. 2000. Parallel Climate Model (PCM) control and transient simulations. Climate Dyn. 16, 755-774.
    • Webster, P. J., Holland, G. J., Curry, J. A. and Chang, H.-R. 2005. Changes in tropical cyclone number and intensity in a warming environment. Science 309, 1844-1846.
    • Wu, M. C., Yeung, K. H. and Chang, W. L. 2006. Trends in western north Pacific tropical cyclone intensity. EOS 87(48), 537-538.
    • Yoshimura, J., Sugi, M. and Noda, A. 2006. Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan 84(2), 405-428.
    • Yukimoto, S. and Noda, A. 2002. Improvements of the Meteorological Research Institute Global Ocean-atmosphere Coupled GCM (MRICGCM2) and its climate sensitivity. Tech. Rep. 10, National Institute for Environmental Studies, Japan.
    • Zehnder, J. A., Powell, D. M. and Ropp, D. L. 2006. The interaction of easterly waves, orography and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Mon. Wea. Rev. 127, 1566-1585.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from