LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bauch, Henning; Erlenkeuser, Helmut (2008)
Publisher: Norwegian Polar Institute
Types: Article
Subjects:
Sediment cores from the Norwegian Sea were studied to evaluate interglacial climate conditions of the marine isotope stage 5e (MIS 5e). Using planktic forminiferal assemblages as the core method, a detailed picture of the evolution of surface water conditions was derived. According to our age model, a steplike deglaciation of the Saalian ice sheets is noted between ca. 135 and 124.5 Kya, but the deglaciation shows little response with regard to surface ocean warming. From then on, the rapidly increasing abundance of subpolar forminifers, concomitant with decreasing iceberg indicators, provides evidence for the development of interglacial conditions sensu stricto (5e-ss), a period that lasted for about 9 Ky. As interpreted from the foraminiferal records, and supported by the other proxies, this interval of 5e-ss was in two parts: showing an early warm phase, but with a fresher, i.e., lower salinity, water mass, and a subsequent cooling phase that lasted until ca. 118.5 Kya. After this time, the climatic optimum with the most intense advection of Atlantic surface water masses occurred until ca. 116 Kya. A rapid transition with two notable climatic perturbations is observed subsequently during the glacial inception. Overall, the peak warmth of the last interglacial period occurred relatively late after deglaciation, and at no time did it reach the high warmth level of the early Holocene. This finding must be considered when using the last interglacial situation as an analogue model for enhanced meridional transfer of ocean heat to the Arctic, with the prospect of a future warmer climate.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andersen C., Koç, N., Jennings A. & Andrews J.T. 2004. Nonuniform response of the major surface currents in the Nordic seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19, PA2003, doi: 10.1029/2002PA000873.
    • Andersen K.K., Azuma N., Barnola J.M., Bigler M., Biscaye P., Caillon N., Chappellaz J., Clausen H.B., Dahl-Jensen D., Fischer H., Fluckiger J., Fritzsche D., Fujii Y., Goto-Azuma K., Gronvold K., Gundestrup N.S., Hansson M., Huber C., Hvidberg C.S., Johnsen S.J., Jonsell U., Jouzel J., Kipfstuhl S., Landais A., Leuenberger M., Lorrain R., Masson-Delmotte V., Miller H., Motoyama H., Narita H., Popp T., Rasmussen S.O., Raynaud D., Rothlisberger R., Ruth U., Samyn D., Schwander J., Shoji H., Siggard-Andersen M.L., Steffensen J.P., Stocker T., Sveinbjornsdottir A.E., Svensson A., Takata M., Tison J.L., Thorsteinsson T., Watanabe O., Wilhelms F. & White J.W.C. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147-151.
    • Anderson P., Bennike O., Bigelow N., Brigham-Grette J., Duvall M., Edwards M., Frechette B., Funder S., Johnsen S., Knies J., Koerner R., Lozhkin A., Marshall S., Matthiessen J., Macdonald G., Miller G., Montoya M., Muhs D., Otto-Bliesner B., Overpeck J., Reeh N., Sejrup H.P., Spielhagen R., Turner C. & Velichko A. 2006. Last interglacial Arctic warmth confirms polar amplification of climate change. Quaternary Science Reviews 25, 1383-1400.
    • Arctic Climatology Project 1998. Environmental Working Group joint US-Russian atlas of the Arctic Ocean-summer period. L. Timokhov & F. Tanis (eds.). Ann Arbor, MI: Environmental Research Institute of Michigan in association with the National Snow and Ice Data Center. CD-rom.
    • Bauch H.A. 1992. Test size variation of planktic foraminifers as response to climatic changes. Abstracts, 4th International Conference on Paleoceanography. GEOMAR Report 15, 56.
    • Bauch H.A. 1994. Significance of variability in Turborotalita quinqueloba (Natland) test size and abundance for paleoceanographic interpretations in the Norwegian-Greenland Sea. Marine Geology 121, 129-141.
    • Bauch H.A. 1996. Monitoring Termination II at high latitude anomalies in the planktic foraminiferal record. Marine Geology 131, 89-102.
    • Bauch D. & Bauch H.A. 2001. Last glacial benthic foraminiferal d18O anomalies in the polar North Atlantic: a modern analogue evaluation. Journal of Geophysical Research-Oceans 106(C5), 9135-9143.
    • Bauch D., Darling K., Simstich J., Bauch H.A., Erlenkeuser H. & Kroon D. 2003. Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma. Nature 424, 299-302.
    • Bauch H.A. & Erlenkeuser H. 2003. Interpreting glacial-interglacial changes in ice volume and climate from subarctic deep water foraminiferal d18O. In A.W. Droxler et al. (eds.): Earth's climate and orbital eccentricity: the marine isotope stage 11 question. Geophysical Monograph Series 137. Pp. 87-102. Washington, D.C.: American Geophysical Union.
    • Bauch H.A., Erlenkeuser H., Fahl K., Spielhagen R.F., Weinelt M.S., Andruleit H. & Henrich R. 1999. Evidence for a steeper Eemian than Holocene sea surface temperature gradient between Arctic and sub-Arctic regions. Palaeogeography, Palaeoclimatology, Palaeoecology 145, 95-117.
    • Bauch H.A., Erlenkeuser H., Grootes P.M. & Jouzel J. 1996. Implications of stratigraphic and paleoclimatic records of the last interglaciation from the Nordic seas. Quaternary Research 46, 260-269.
    • Bauch H.A., Erlenkeuser H., Jung S.J.A. & Thiede J. 2000. Surface and deep water changes in the subpolar North Atlantic during Termination II and the last interglaciation. Paleoceanography 15, 76-84.
    • Bauch H.A., Erlenkeuser H., Spielhagen R.F., Struck U., Matthiessen J., Thiede J. & Heinemeier J. 2001. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 years. Quaternary Science Reviews 20, 659-678.
    • Bauch H.A. & Kandiano E.S. 2007. Evidence for early warming and cooling in North Atlantic surface waters during the last interglacial. Paleoceanography 22, PA1201, doi: 10.1029/2005 PA001252.
    • Bé A.W. & Tolderlund D.S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian oceans. In B.M. Funnel & W.R. Riedel (eds.): The micropaleontology of oceans. Pp. 105-149. Cambridge: Cambridge University Press.
    • Berger A. 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences 35, 2362-2367.
    • Calvo E., Grimalt J. & Jansen E. 2002. High resolution U37K sea surface temperature reconstruction in the Norwegian Sea during the Holocene. Quaternary Science Reviews 21, 1385-1394.
    • Carstens J. 1991. Verteilung planktischer Foraminiferen in der Wassersäule. (Distribution of planktic foraminifers in the water column.) In J. Thiede & G. Hempel (eds.) Die Expedition ARKTIS-VII/1 mit FS “Polarstern” 1990. (The ARKTIS-VII/1 expedition with the RV Polarstern in 1990.) Berichte zur Polarforschung 80, 60-62.
    • Carstens J., Hebbeln D. & Wefer, G. 1997. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Marine Micropaleontology 29, 257-269.
    • Chapman M.R. & Shackleton N.J. 1999. Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 Ka. Geology 27, 795-798.
    • Cortijo E., Duplessy J.-C., Labeyrie L., Leclaire H., Duprat J. & van Weering T.C.E. 1994. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446-449.
    • Cuffey K.M. & Marshall S.J. 2000. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591-594.
    • Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjörnsdottir A.E., Jouzel J. & Bond G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218-220.
    • Didié C. & Bauch H.A. 2000. Species composition and glacial-interglacial variations in the ostracode fauna in the northeast Atlantic during the past 200,000 years. Marine Micropaleontology 40, 105-129.
    • Dokken T.D. & Jansen E. 1999. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401, 458-461.
    • Eynaud F., Turon J.-L. & Duprat J. 2004. Comparison of the Holocene and Eemian palaeoenvironments in the South Icelandic Basin: dinoflagellate cysts as proxies for the North Atlantic surface circulation. Review of Palaeobotany and Palynology 128, 55-79.
    • Fairbanks R.G., Mortlock R.A., Chiu T.-C., Cao L., Kaplan A., Guilderson T.P., Fairbanks T.W., Bloom A.L., Grootes P.M. & Nadeau M.-J. 2005. Radiocarbon calibration curve spanning 0 to 50 000 years BP based on paired 230Th/ 234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, 1781-1796.
    • Fronval T. & Jansen E. 1996. Rapid changes in ocean circulation and heat flux in the Nordic seas during the last interglacial period. Nature 383, 806-810.
    • Fronval T. & Jansen E. 1997. Eemian and early Weichselian (140-60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions. Paleoceanography 12, 443-462.
    • Fronval T., Jansen E., Haflidason H. & Sejrup H.-P. 1998. Variability in surface and deep water conditions in the Nordic seas during the last interglacial period. Quaternary Science Reviews 17, 963-985.
    • Funder S., Demidov I. & Yelovicheva Y. 2002. Hydrography and mollusc faunas of the Baltic and the White Sea-North Sea seaway in the Eemian. Palaeogeography, Palaeoclimatology, Palaeoecology 184, 275-304.
    • Gouzy A., Malaizé B., Pujol C. & Charlier K. 2004. Climatic “pause” during Termination II identified in shallow and intermediate waters off the Iberian margin. Quaternary Science Reviews 23, 1523-1528.
    • Grootes P.M., Stuiver M., White J.W.C., Johnsen S. & Jouzel J. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552-554.
    • Haake F.W. & Pflaumann U. 1989. Late Pleistocene foraminiferal stratigraphy on the Vøring Plateau, Norwegian Sea. Boreas 18, 343-356.
    • Hald M., Andersson C., Ebbesen H., Jansen E., Klitgaard-Kristensen D., Risebrobakken B., Salomonsen G.R., Sarnthein M., Sejrup H.P. & Telford R.J. 2007. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26, 3423-3440.
    • Hald M., Ebbesen H., Forwick M., Godtliebsen F., Khomenko L., Korsun S., Olsen L. & Vorren T.O. 2004. Holocene paleoceanography and glacial history of the west Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, 2075-2088.
    • Hebbeln D., Dokken T., Andersen E.S., Hald M. & Elverhoi A. 1994. Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370, 357-360.
    • Hillaire-Marcel C., de Vernal A., Bilodeau G. & Weaver A.J. 2001. Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature 410, 1073-1077.
    • Imbrie J., Boyle E.A., Clemens S.C., Duffy A., Howard W.R., Kukla G., Kutzbach J., Martinson D.G., McIntyre A., Mix A.C., Molfino B., Morley J.J., Peterson L.C., Pisias N.G., Prell W.L., Raymo M.E., Shackleton N.J. & Toggweiler J.R. 1992. On the structure and the origin of major glaciation cycles: 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701-738.
    • Johannessen T., Jansen E., Flatøy A. & Ravelo A. 1994. The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian seas. In R. Zahn et al. (eds.) Carbon cycling in the glacial ocean: constraints on the ocean's role in global change. Pp. 61-85. Berlin: Springer.
    • Jung W.Y. & Vogt P.R. 2004. Effects of bottom water warming and sea level rise on Holocene hydrate dissociation and mass wasting along the Norwegian-Barents continental margin. Journal of Geophysical Research-Solid Earth 109(B6), doi: 10.1029/ 2003JB002738.
    • Kandiano E.S. & Bauch H.A. 2002. A case study on the application of different planktic foraminiferal size fractions for interpreting late Quaternary paleoceanographic changes in the polar North Atlantic. Journal of Foraminiferal Research 32, 245-251.
    • Kandiano E.S., Bauch H.A. & Müller A. 2004. Sea surface temperature variability in the North Atlantic during the last two glacial-interglacial cycles: comparison of faunal, oxygen isotopic and Mg/Ca-derived records. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 145-164.
    • Kellogg T.B. 1980. Paleoclimatology and paleoceanography of the Norwegian and Greenland seas: glacial-interglacial contrasts. Boreas 9, 115-137.
    • Koç N., Jansen E. & Haflidason H. 1993. Paleoceanograhic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12, 115-140.
    • Koerner R.M. 1989. Ice core evidence for extensive melting of the Greenland ice sheet in the last interglacial. Science 244, 964-968.
    • Kukla G.J. & Went E. (eds.) 1992. Start of a glacial. Proceedings of the NATO Advanced Research Workshop on Correlating Records of the Past. NATO ASI Series 1. Vol. 3. Heidelberg: Springer.
    • Lambeck K., Purcell A., Funder S., Kjaer K., Larsen E. & Möller P. 2006. Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35, 539-575.
    • Lehman S.J., Sachs J.P., Crotwell A.M., Keigwin L.D. & Boyle E.A. 2002. Relation of subtropical Atlantic temperature, high-latitude ice rafting, deep water formation, and European climate 130 000-60 000 years ago. Quaternary Science Reviews 21, 1917-1924.
    • Martinson D.G., Pisias N.G., Hays J.D., Imbrie J., Moore T.C. & Shackleton N.J. 1987. Age dating and the orbital theory of the ice ages-development of a high-resolution 0 to 300,000 years chronostratigraphy. Quaternary Research 27, 1-29.
    • Matthiessen J. & Knies J. 2001. Dinoflagellate cyst evidence for warm interglacial conditions at the northern Barents Sea margin during marine oxygen isotope stage 5. Journal of Quaternary Science 16, 727-737.
    • McManus J., Bond G., Broecker W., Johnsen S., Labeyrie L. & Higgins S. 1994. High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326-329.
    • Montoya M., Crowley T.J. & von Storch H. 1998. Temperatures at the last interglacial simulated by a coupled ocean-atmosphere climate model. Paleoceanography 13, 170-177.
    • Müller U.C. & Kukla G.J. 2004. North Atlantic Current and European environments during the declining stage of the last interglacial. Geology 32, 1009-1012.
    • Nesje A. & Kvamme M. 1991. Holocene glacier and climate variations in western Norway: evidence for early Holocene glacier demise and multiple Neoglacial events. Geology 19, 610-612.
    • Nørgaard-Pedersen N., Mikkelsen N., Lassen S.J., Kristoffersen Y. & Sheldon E. 2007. Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off northern Greenland. Paleoceanography 22, PA1218, doi: 10.1029/ 2006PA001283.
    • Oppo D.W., Horowitz M. & Lehman S.J. 1997. Marine core evidence for reduced deep water production during Termination II followed by a relatively stable substage 5e (Eemian). Paleoceanography 12, 51-63.
    • Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H. & Hu A. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751-1753.
    • Overpeck J.T., Otto-Bliesner B.L., Miller G.H., Muhs D.R., Alley R.B. & Kiehl J.T. 2005. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 1747-1750.
    • Pflaumann U. 1988. Plankton-Foraminiferen in der Sedimentoberfläche. (Planktic foraminifers in surface sediments.) Berichte aus dem Sonderforschungsbereich 313, 175-177. Kiel: University of Kiel.
    • Pflaumann U., Duprat J., Pujol C. & Labeyrie L.D. 1996. SIMMAX, a modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11, 15-35.
    • Rasmussen T.L., Balbon E., Thomsen E., Labeyrie L. & van Weering T.C.E. 1999. Climate records and changes in deep outflow from the Norwegian Sea ~150-55 ka. Terra Nova 11, 61-66.
    • Rasmussen T.L., Thomsen E., Kuijpers A. & Wastegård S. 2003. Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian interglacial). Quaternary Science Reviews 22, 809-821.
    • Rasmussen T.L., Thomsen E., van Weering T.C.E. & Labeyrie L. 1996. Rapid changes in surface and deep waters at the Faeroe Margin during the last 58,000 years. Paleoceanography 11, 757-771.
    • Riesebrobakken B., Balbon E., Dokken T., Jansen E., Kissel C., Labeyrie L., Richter T. & Senneset L. 2006. The penultimate deglaciation: high-resolution paleoceanographic evidence from a north-south transect along the eastern Nordic seas. Earth and Planetary Science Letters 241, 505-516.
    • Riesebrobakken B., Dokken T., Otterå O.H., Jansen E., Gao Y. & Drange H. 2007. Inception of the northern European ice sheet due to contrasting ocean and insolation forcing. Quaternary Research 67, 128-135.
    • Riesebrobakken B., Jansen E., Andersson C., Mjelde E. & Hevrøy K. 2003. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic seas. Paleoceanography 18, 1017, doi: 10.1029/ 2002PA000764.
    • Sarnthein M. & Tiedemann R. 1990. Younger Dryas-style cooling events at glacial terminations I-VI at ODP-Site 658: associated benthic d13C anomalies constrain meltwater hypothesis. Paleoceanography 5, 1041-1055.
    • Sarnthein M., van Kreveld S., Erlenkeuser H., Grootes P.M., Kucera M., Pflaumann U. & Schulz M. 2003. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32, 447-461.
    • Schröder-Ritzrau A., Andruleit H., Jensen S., Samtleben C., Schäfer P., Matthiessen J., Hass H.C., Kohly A. & Thiede J. 2001. Distribution, export and alteration of fossilizable plankton in the Nordic seas. In P. Schäfer et al. (eds.): The northern Atlantic: a changing environment. Pp. 81-104. Berlin: Springer.
    • Seidenkrantz M.-S. & Knudsen K.L. 1997. Eemian climatic and hydrographical instability on a marine shelf in Northern Denmark. Quaternary Research 47, 218-234.
    • Shaffer G., Olsen S.M. & Bjerrum C.J. 2004. Ocean subsurface warming as a mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting events. Geophysical Research Letters 31, L24202, doi: 10.1029/ 2004GL020968.
    • Siddall M., Bard E., Rohling E.J. & Hemleben C. 2006. Sea-level reversal during Termination II. Geology 34, 817-820.
    • Simstich J. 1999. Die ozeanische Deckschicht des Europäischen Nordmeers im Abbild stabiler Isotope von Kalkgehäusen unterschiedlicher Planktonforaminiferenarten. (Variations in the oceanic surface layer of the Nordic seas: the stable isotope record of polar and subpolar planktonic foraminifera.) Berichte-Reports, Institut für Geowissenschaften, Universität Kiel 2. Kiel: Institute of Geosciences, University of Kiel.
    • Van Nieuwenhove N. & Bauch H.A. 2008. Last interglacial (M15 5e) surface water conditions at the Vøring Plateau (Norwegian Sea), based on dinoflagellate cysts. Polar Research 27, 175-186 (this issue).
    • Van Nieuwenhove N., Bauch H.A. & Matthiessen J. 2008. Last interglacial surface water conditions in the eastern Nordic seas inferred from dinocyst and foraminiferal assemblages. Marine Micropaleontology 66, 247-263.
    • Veum T., Jansen E., Arnold M., Beyer I. & Duplessy J.-C. 1992. Water mass exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years. Nature 356, 783-785.
    • Vogelsang E. 1990. Paläo-Ozeanographie des Europäischen Nordmeeres anhand stabiler Kohlenstoff- und Sauerstoffisotope. (Paleoceanography of the Nordic seas on the basis of stable carbon and oxygen isotopes.) Berichte aus dem Sonderforschungsbereich 313. Kiel: University of Kiel.
    • Winn K., Glos R., Averdieck F.R. & Erlenkeuser H. 2000. On the age of the marine Eem in northwestern Germany. Geologos 5, 41-56.
    • Winograd I.J., Coplen T.B., Landwehr J.M., Riggs A.C., Ludwig K.R., Szabo B.J., Kolesar P.T. & Revesz M. 1992. Continuous 500 000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255-260.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article