LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Enting, I. G.; Mansbridge, J. V. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Analyses of the compatibility between postulated releases of biotic carbon and changes in atmospheric CO2 concentration must properly consider the history of changes in each quantity. A history of atmospheric CO2 changes obtained from ice-cores is compared to a history of biotic CO2 releases obtained from ecosystem modelling. It is shown that these two records are incompatible with any linear time-invariant model of oceanic uptake of CO2.DOI: 10.1111/j.1600-0889.1987.tb00102.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bolin, B., Bjorkstrom, A., Holmen, K. and Moore, B. 1983. The simultaneous use of tracers for Ocean circulation studies Tellus 358, 2 6 2 3 6 .
    • Broecker, W. S., Peng, T.-H. and Engh, R. 1980. Modelling the carbon system. Radiocarbon 22, 565- 598.
    • Enting, I. G. 1985a. Green's functions and response functions in geochemical modelling. PAGEOPH 123, 328-343.
    • Enting, I. G. 1985b. A classification of some inverse problems in geochemical modelling. Tellus 378, 2 1 6 229.
    • Enting, 1. G. 1985c. A lattice statistics model for the age distribution of air bubbles in polar ice. Nafure 3 1 5 , 6 5 4 4 5 5 .
    • Enting, I. G. and Pearman, G. I. 1986. The use of observations in calibrating and validating carbon cycle models. Chapter 21, pp. 4 2 5 4 5 8 of The chunging curbon cycle: a globul una/ysis, eds. J. Trabalka and D. Reichle. Springer-Verlag, New York.
    • Francey, R. J. and Farquhar, G. D. 1982. An explanation of "C/'2C variations in tree rings. Nature 297, 28-31.
    • Francey, R. J., Gifford, R. M., Sharkey, T. D. and Weir, B. 1985. Physiological influences on carbon isotope discrimination in huon pine (Lagarostrobos franklinii). Oceologia 66, 21 1-218.
    • Gass, L. 1969. Linear programming: methods and upplicufions.McGraw-Hill, New York,
    • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R. and Woodwell, G . M. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO, to the atmosphere. Ecol. Monogr. 53, 235-262.
    • Keeling, C. D. 1973. Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25, 174-198.
    • Keeling, C. D., Bacastow, R. B. and Whorf, T. P. 1982. Measurements of the concentration of carbon dioxide at Mauna Loa observatory, Hawaii, pp. 377-385 of Curbon Dioxide Review 1982, ed. W. C . Clark, Clarendon, Oxford.
    • Neftel, A,, Moor, E., Oeschger, H. and Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO, in the past two centuries. Nuture 3 1 5 , 4 5 4 7 .
    • Oeschger, H. and Heimann, M. 1983. Uncertainties of predictions of future atmospheric CO, concentrations, J. Geophys. Res. 88C, 1258-1262.
    • Oeschger, H., Siegenthaler, U., Schotterer, U. and Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27, 168-192.
    • Peng, T.-H. and Broecker, W. S. 1984. Ocean life cycles and atmospheric CO, content. J. Geophys. Res 89C, 81 70-8180.
    • Peng, T.-H. and Broecker, W. S. 1985. The utility of multiple tracer distributions in calibrating models for uptake of anthropogenic CO, by the Ocean thermocline. J. Geophys. Res. WC, 7023-7035.
    • Peng, T.-H., Broecker, W. S., Freyer, H. D. and Trumbore, S. 1983. A deconvolution of the tree-ring based 6°C record J. Geophys. Res. 88C, 3609-3620.
    • Raynaud, D. and Barnola, J. M. 1985. An Antarctic ice core reveals atmospheric CO, variations over the past few centuries. Nature 315, 309-31 1.
    • Rotty, R . M. 1981. Data for global CO, production from fossil fuels and cement, pp. 121-125 of Curbon cycle modelling, SCOPE 16, ed. B. Bolin. John Wiley and Sons, Chichester.
    • Siegenthaler, U . 1983. Uptake of excess CO, by an outcrop-diffusion model of the Ocean. J. Geophys. Res 88C, 3599-3608.
    • Siegenthaler, U. and Oeschger, H. 1987. Biospheric CO, emissions during the past 200 years reconstructed by deconvolution of ice-core CO, data. Tellus 398, 140-154.
    • Woodwell, G. M., Whittaker, R. H., Reinders, W. A., Likens, G. E., Delwiche, C. C. and Botkin, D. B. 1978. The biota and the world carbon budget. Science 199, 141-146.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from