Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gires , Auguste; Tchiguirinskaia , Ioulia; Schertzer , D; Ochoa-Rodriguez , S.; Willems , P.; Ichiba , Abdellah; Wang , Li-Pen; Pina , Rui; Van Assel , Johan; Bruni , Guendalina; Murla Tuyls , Damian; ten Veldhuis , Marie-Claire (2017)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: Fractal analysis, G, Geography. Anthropology. Recreation, Sewer system, [ SDU.STU.HY ] Sciences of the Universe [physics]/Earth Sciences/Hydrology, Technology, TD1-1066, Urban drainage, T, GE1-350, Environmental technology. Sanitary engineering, Environmental sciences, [ SDE.IE ] Environmental Sciences/Environmental Engineering
International audience; Fractal analysis relies on scale invariance and the concept of fractal dimension enables one to characterize and quantify the space filled by a geometrical set exhibiting complex and tortuous patterns. Fractal tools have been widely used in hydrology but seldom in the specific context of urban hydrology. In this paper, fractal tools are used to analyse surface and sewer data from 10 urban or peri-urban catchments located in five European countries. The aim was to characterize urban catchment properties accounting for the complexity and inhomogeneity typical of urban water systems. Sewer system density and imperviousness (roads or buildings), represented in rasterized maps of 2 m × 2 m pixels, were analysed to quantify their fractal dimension, characteristic of scaling invariance. The results showed that both sewer density and imperviousness exhibit scale-invariant features and can be characterized with the help of fractal dimensions ranging from 1.6 to 2, depending on the catchment. In a given area consistent results were found for the two geometrical features, yielding a robust and innovative way of quantifying the level of urbanization. The representation of impervious-ness in operational semi-distributed hydrological models for these catchments was also investigated by computing frac-tal dimensions of the geometrical sets made up of the sub-catchments with coefficients of imperviousness greater than a range of thresholds. It enables one to quantify how well spatial structures of imperviousness were represented in the urban hydrological models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bendjoudi, H. and Hubert, P.: Le coefficient de compacite de Gravelius: analyse critique d'un indice de forme des bassins versants, Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 47, 921-930, 2002.
    • Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166-179, 2004.
    • Chen, L., Wang, J., Fu, F., and Qiu, Y.: Land-use change in a small catchment of northern Loess Plateau, China. Agriculture, Ecosyst. Environ., 86, 163-172, doi:10.1016/S0167- 8809(00)00271-1, 2001.
    • Darrel, J. and Wu, J.: Analysis and simulation of land-use change in the central Arizona - Phoenix region, USA, Land. Ecol., 16, doi:10.1023/A:1013170528551, 2001.
    • De Bartolo, S. G., Gaudio, R., and Gabriele, S.: Multifractal analysis of river networks: Sandbox approach, Water Resour. Res., 40, W02201, doi:10.1029/2003WR002760, 2004.
    • De Bartolo, S. G., Primavera, L., Gaudio, R., D'Ippolito, A., and Veltri, M.: Fixed-mass multifractal analysis of river networks and braided channels, Phys. Rev. E, 74, doi:10.1103/PhysRevE.74.026101, 2006.
    • Foufoula-Georgiou, E. and Sapozhnikov, V.: Scale invariances in the morphology and evolution of braided rivers, Math. Geol., 33, 273-291, doi:10.1023/A:1007682005786, 2001.
    • Gangodagamage, C., Belmont, P., and Foufoula-Georgiou, E.: Revisiting scaling laws in river basins: new considerations across hillslope and fluvial regimes, Water Resour. Res., 47, W07508, doi:10.1029/2010WR009252, 2011.
    • Gangodagamage, C., Foufoula-Georgiou, E., and Belmont, P.: River basin organization around the mainstem: scale invariance in tributary branching and the incremental area function, J. Geophys. Res.-Earth Surf., 119, 2174-2193, doi:10.1002/2014JF003304, 2014.
    • Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Multifractal analysis of an urban hydrological model on a Seine-SaintDenis study case, Urban Water J., 10, 195-208, 2012.
    • Gires, A., Giangola-Murzyn, A., Abbes, J. B., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Impacts of small scale rainfall variability in urban areas: a case study with 1D and 1D/2D hydrological models in a multifractal framework, Urban Water J., 12, 607-617, doi:10.1080/1573062X.2014.923917, 2014.
    • Gires, A., Tchiguirinskaia, I., Schertzer, D., Ochoa-Rodriguez, S., Willems, P., Ichiba, A., ten Veldhuis, M.-C., Wang, L.-P., Pina, R., Van Assel, J., Bruni, G., Murla Tuyls, D., and ten Veldhuis, M.-C.: Data for “Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system” [Data set], Zenodo, doi:10.5281/zenodo.571181, 2017.
    • Hentschel, H. E. and Proccacia, I.: The infinite number of generalized dimensions of fractals and strange attractors, Physica, 8D, 435-444, 1983.
    • Hjelmfelt, A.: Fractals and the river-length catchment-area ratio, Water Resour. Bull., 24, 455-459, 1988.
    • Hubert, P., Friggit, F., and Carbonnel, J. P.: Multifractal structure of rainfall occurrence in west Africa, in: New Uncertainty Concepts in Hydrology andWater Resources, edited by: Kundzewicz, Z. W., Cambridge University Press, Cambridge, 109-113, 1995.
    • Iverson, L.: Land-use changes in Illinois, USA: The influence of landscape attributes on current and historic land use, Land. Ecol., 2, 45-61, doi:10.1007/BF00138907, 1988.
    • La Barbera, P. and Rosso, R.: On the fractal dimension of stream networks, Water Resour. Res., 25, 735-741, doi:10.1029/WR025i004p00735, 1989.
    • Lavallée, D., Lovejoy, S., and Ladoy, P.: Nonlinear variability and landscape topography: analysis and simulation, in: Fractals in geography, edited by: De Cola, L. and Lam, N., New York, Prentice-Hall, 158-192, 1993.
    • Lavergnat, J. and Golé, P.: A stochastic rainfrop time distribution model, J. Appl. Met, 37, 805-818, 1998.
    • Lovejoy, S. and Mandelbrot, B.: Fractal properties of rain and a fractal model, Tellus, 37A, 209-232, 1985.
    • Lovejoy, S. and Schertzer, D.: Generalized scale-invariance in the atmosphere and fractal models of rain, Water Resour. Res., 21, 1233-1250, 1985.
    • Lovejoy, S., Schertzer, D., and Tsonis, A. A.: Functional boxcounting and multiple elliptical dimensions in rain, Science, 235, 1036-1038, 1987.
    • Mandelbrot, B. B.: The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 468 pp., 1983.
    • Nikora, V.: Fractal structures of river plan forms, Water Resour. Res., 27, 1327-1333, doi:10.1029/91WR00095, 1991.
    • Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R., ReinosoRondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., van Assel, J., Kroll, S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., and ten Veldhuis, M.-C.: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation, J. Hydrol., 531, 389-407, doi:10.1016/j.jhydrol.2015.05.035, 2015.
    • Ogden, F. L. and Julien, P. Y.: Runoff model sensitivity to radar rainfall resolution, J. Hydrol., 158, 1-18, 1994.
    • Olsson, J., Niemczynowicz, J., and Berndtsson, R.: Fractal analysis of high-resolution rainfall time series, J. Geophys. Res., 98, 23265-23274, 1993.
    • Pandey, G., Lovejoy, S., and Schertzer, D.: Multifractal analysis including extremes of daily river flow series for basis five to two million square kilometres, one day to 75 years, J. Hydrol., 208, 62-81, 1998.
    • Rossman, L. A.: Storm Water Management Model User's Manual Version 5.0, Cincinnati, Ohio, 2010.
    • Rosso, R., Bacchi, B., and La Barbera, P.: Fractal relation of mainstream length to catchment area in river networks, Water Resour. Res., 27, 381-387, doi:10.1029/90WR02404, 1991.
    • Sarkis, B.: Etude multi-échelle des réseaux d'assainissement, MSc Thesis, Ecole des Ponts ParisTech, 2008.
    • Schertzer, D. and Lovejoy, S.: Physical modelling and analysis of rain and clouds by anisotropic scaling and multiplicative processes, J. Geophys. Res., 92, 9693-9714, 1987.
    • Schertzer, D. and Lovejoy, S.: Universal Multifractals do Exist!: Comments on “A statistical analysis of mesoscale rainfall as a random cascade”, J. Appl. Meteor., 36, 1296-1303, 1997.
    • Schertzer, D. and Lovejoy, S.: Multifractals, Generalized Scale Invariance and Complexity in Geophysics, International Journal of Bifurcation and Chaos, 21, 3417-3456, 2011.
    • Takayasu, H.: Fractals in the physical sciences, Manchester University Press, Manchester, 1990.
    • Tannier, C., Thomas, I., Vuidel, G., and Frankhauser, P.: A Fractal Approach to Identifying Urban Boundaries, Geogr. Anal., 43, 211-227, doi:10.1111/j.1538-4632.2011.00814.x, 2011.
    • Tarboton, D., Bras, R., and Rodriguez-Iturbe, I.: The fractal nature of river networks, Water Resour. Res., 24, 1317-1322, doi:10.1029/WR024i008p01317, 1988.
    • Tarboton, D.: Fractal river networks, Horton's laws and Tokunaga cyclicity, J. Hydrol., 187, 105-117, doi:10.1016/S0022- 1694(96)03089-2, 1996.
    • Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., and Pecknold, S.: Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions, J. Geophys. Res., 31D, 26427- 26440, 1996.
    • Veltri, M., Veltri, P., and Maiolo, M.: On the fractal description of natural channel networks, 187, 137-144, doi:10.1016/S0022- 1694(96)03091-0, 1996.
    • Versini, P. A., Gires, A., Tchinguirinskaia, I., and Schertzer, D.: Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfallrunoff model Multi-Hydro, Water Sci. Technol., 74, 1845-1854, doi:10.2166/wst.2016.310, 2016.
    • Wang, X., Li, M. H., Liu, S., and Liu, G.: Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma, 134, 56-61, doi:10.1016/j.geoderma.2005.08.014, 2006.
  • No similar publications.