Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bridgman, Matthew J.; Lomax, Barry H.; Sjogersten, Sofie (2016)
Languages: English
Types: Article
Wetland vegetation provide strong controls on greenhouse gas fluxes but impacts of elevated atmospheric carbon dioxide (CO2) levels on greenhouse gas emissions from wetlands are poorly understood. This study aims to investigate if elevated atmospheric CO2 enhance methane (CH4) emissions from subarctic wetlands and to determine if responses are comparable or species specific within the Cyperaceae, an important group of artic wetland plants. To achieve this we carried out a combined field and laboratory investigation to measure of CO2 and CH4 fluxes. The wetland was a CH4 source with comparable fluxes from areas with and without vegetation and across the different sedge communities. In contrast, the net ecosystem exchange of CO2 differed with sedge species. Within the laboratory experiment plants grown at double ambient (800 ppm) CO2, total biomass of Eriophorum vaginatum and Carex brunnescens increased, whereas the total biomass of E. angustifolium and C. acuta decreased, compared to the control (400 ppm CO2). These changes in biomass were associated with corresponding changes in CH4 flux. E. vaginatum and C. brunnescens mesocosms produced more CH4 when grown in 800 ppm atmospheric CO2 when compared to 400 ppm CO2 with E. angustifolium and C. acuta producing less. Additionally, redox potential and carbon substrate availability in the pore water differed among the plant treatments and in response to the elevated CO2 treatment. Together, this suggests species specific controls of CH4 emissions in response to elevated CO2, which facilitate differential plant growth responses and modification of the rhizosphere environments. Our study highlights species composition as an important control of greenhouse gas feedbacks in a CO2 rich future, which need to be considered in models aiming to predict how ecosystems respond to climate change.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from