Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
J. P. Burrows; A. Hilboll; M. Begoin; A. Richter (2011)
Publisher: Copernicus Publications
Journal: Atmospheric Measurement Techniques
Languages: English
Types: Article
Subjects: Meteorology. Climatology, DOAJ:Earth and Environmental Sciences, TA170-171, Engineering (General). Civil engineering (General), QC851-999, TA1-2040, Q, Earthwork. Foundations, Physics, Science, DOAJ:Meteorology and Climatology, Environmental engineering, QC1-999, TA715-787
Satellite observations of nitrogen dioxide (NO2) provide valuable information on both stratospheric and tropospheric composition. Nadir measurements from GOME, SCIAMACHY, OMI, and GOME-2 have been used in many studies on tropospheric NO2 burdens, the importance of different NOx emissions sources and their change over time. The observations made by the three GOME-2 instruments will extend the existing data set by more than a decade, and a high quality of the data as well as their good consistency with existing time series is of particular importance.

In this paper, an improved GOME-2 NO2 retrieval is described which reduces the scatter of the individual NO2 columns globally but in particular in the region of the Southern Atlantic Anomaly. This is achieved by using a larger fitting window including more spectral points, and by applying a two step spike removal algorithm in the fit. The new GOME-2 data set is shown to have good consistency with SCIAMACHY NO2 columns. Remaining small differences are shown to be linked to changes in the daily solar irradiance measurements used in both GOME-2 and SCIAMACHY retrievals.

In the large retrieval window, a not previously identified spectral signature was found which is linked to deserts and other regions with bare soil. Inclusion of this empirically derived pseudo cross-section significantly improves the retrievals and potentially provides information on surface properties and desert aerosols.

Using the new GOME-2 NO2 data set, a long-term average of tropospheric columns was computed and high-pass filtered. The resulting map shows evidence for pollution from several additional shipping lanes, not previously identified in satellite observations. This illustrates the excellent signal to noise ratio achievable with the improved GOME-2 retrievals.
  • No references.
  • No related research data.
  • No similar publications.