LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Scarmana, G. (2012)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology

Classified by OpenAIRE into

arxiv: Computer Science::Computer Vision and Pattern Recognition
ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, ComputingMethodologies_COMPUTERGRAPHICS
This paper relates to the reconstruction of digital images using their contour representations. The process involves determining the pixel intensity value which would exist at the intersections of a regular grid using the nodes of randomly spaced contour locations. The reconstruction of digital images from their contour maps may also be used as a tool for image compression. This reconstruction process may provide for more accurate results and improved visual details than existing compressed versions of the same image, while requiring similar memory space for storage and speed of transmission over digital links.

For the class of images investigated in this work, the contour approach to image reconstruction and compression requires contour data to be filtered and eliminated from the reconstruction process. Statistical tests which validate the proposed process conclude this paper.
  • No references.
  • No related research data.
  • No similar publications.