LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Thum, Tea; Zaehle, Sönke; Köhler, Philipp; Aalto, Tuula; Aurela, Mika; Guanter, Luis; Kolari, Pasi; Laurila, Tuomas; Lohila, Annalea; Magnani, Federico; Tol, Christiaan; Markkanen, Tiina (2016)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: PHOTOSYSTEM-II, 4112 Forestry, CO2 EXCHANGE, QH540-549.5, QE1-996.5, 114 Physical sciences, BOREAL CONIFEROUS FOREST, ENERGY-BALANCE, QH501-531, Geology, BIOCHEMICAL-MODEL, Life, EDDY COVARIANCE, FLUX MEASUREMENTS, Ecology, TERRESTRIAL CHLOROPHYLL FLUORESCENCE, SCOTS PINE FOREST, DATA ASSIMILATION SYSTEM, 1172 Environmental sciences
Recent satellite observations of sun-induced chlorophyll fluorescence (SIF) are thought to provide a large-scale proxy for gross primary production (GPP), thus providing a new way to assess the performance of land surface models (LSMs). In this study, we assessed how well SIF is able to predict GPP in the Fenno-Scandinavian region and what potential limitations for its application exist. We implemented a SIF model into the JSBACH LSM and used active leaf-level chlorophyll fluorescence measurements (Chl F) to evaluate the performance of the SIF module at a coniferous forest at Hyytiälä, Finland. We also compared simulated GPP and SIF at four Finnish micrometeorological flux measurement sites to observed GPP as well as to satellite-observed SIF. Finally, we conducted a regional model simulation for the Fenno-Scandinavian region with JSBACH and compared the results to SIF retrievals from the GOME-2 (Global Ozone Monitoring Experiment-2) space-borne spectrometer and to observation-based regional GPP estimates. Both observations and simulations revealed that SIF can be used to estimate GPP at both site and regional scales. At regional scale the model was able to simulate observed SIF averaged over 5 years with r2 of 0.86. The GOME-2-based SIF was a better proxy for GPP than the remotely sensed fAPAR (fraction of absorbed photosynthetic active radiation by vegetation). The observed SIF captured the seasonality of the photosynthesis at site scale and showed feasibility for use in improving of model seasonality at site and regional scale.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | QUINCY

Cite this article