LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Angermann, Lisa; Jackisch, Conrad; Allroggen, Niklas; Sprenger, Matthias; Zehe, Erwin; Tronicke, Jens; Weiler, Markus; Blume, Theresa (2016)
Languages: English
Types: Article
Subjects:
Preferential flow is omnipresent in natural systems. It links multiple scales from single pores to entire hillslopes and potentially influences the discharge dynamics of a catchment. However, there is still a lack of appropriate monitoring techniques and thus, process understanding. In this study, a promising combination of 2D time-lapse ground-penetrating radar (GPR) and soil moisture monitoring was used to observe preferential flow processes in highly structured soils during a hillslope-scale irrigation experiment. The 2D time-lapse GPR data were interpreted using structural similarity attributes, highlighting changes between individual time-lapse measurements. These changes are related to soil moisture variations in the subsurface. In combination with direct measurements of soil moisture, the spatial and temporal characteristics of the resulting patterns can give evidence about subsurface flow processes. The response dynamics at the hillslope were compared to the runoff response behavior of the headwater catchment. The experiment revealed a fast establishment of hillslope-scale connectivity despite unsaturated conditions, with high response velocities of up to 10−3 m s−1 or faster, and a high portion of mobile water. These processes substantially impact the overall catchment response behavior. While the presented approach is a good way to observe the temporal dynamics and general patterns, the spatial characteristics of small-scale preferential flow path could not be fully resolved.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from