LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Peterman, V.; Mesarič, M. (2012)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, ComputerApplications_COMPUTERSINOTHERSYSTEMS
In this paper we present, how we use a quadrocopter unmanned aerial vehicle with a camera attached to it, to do low altitude photogrammetric land survey. We use the quadrocopter to take highly overlapping photos of the area of interest. A “structure from motion” algorithm is implemented to get parameters of camera orientations and to generate a sparse point cloud representation of objects in photos. Than a patch based multi view stereo algorithm is applied to generate a dense point cloud. Ground control points are used to georeference the data. Further processing is applied to generate digital orthophoto maps, digital surface models, digital terrain models and assess volumes of various types of material. Practical examples of land survey from a UAV are presented in the paper. We explain how we used our system to monitor the reconstruction of commercial building, then how our UAV was used to assess the volume of coal supply for Ljubljana heating plant. Further example shows the usefulness of low altitude photogrammetry for documentation of archaeological excavations. In the final example we present how we used our UAV to prepare an underlay map for natural gas pipeline’s route planning. In the final analysis we conclude that low altitude photogrammetry can help bridge the gap between laser scanning and classic tachymetric survey, since it offers advantages of both techniques.
  • No references.
  • No related research data.
  • No similar publications.