LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gibson, Justin; Franz, Trenton E.; Wang, Tiejun; Gates, John; Grassini, Patricio; Yang, Haishun; Eisenhauer, Dean (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066
In many agricultural regions, the human use of water for irrigation is often ignored or poorly represented in land surface models (LSMs) and operational forecasts. Because irrigation increases soil moisture, feedback on the surface energy balance, rainfall recycling, and atmospheric dynamics is not represented and may lead to reduced model skill. In this work, we describe four plausible and relatively simple irrigation routines that can be coupled to the next generation of hyper-resolution LSMs operating at scales of 1 km or less. The irrigation output from the four routines (crop model, precipitation delayed, evapotranspiration replacement, and vadose zone model) is compared against a historical field-scale irrigation database (2008–2014) from a 35 km2 study area under maize production and center pivot irrigation in western Nebraska (USA). We find that the most yield-conservative irrigation routine (crop model) produces seasonal totals of irrigation that compare well against the observed irrigation amounts across a range of wet and dry years but with a low bias of 80 mm yr−1. The most aggressive irrigation saving routine (vadose zone model) indicates a potential irrigation savings of 120 mm yr−1 and yield losses of less than 3 % against the crop model benchmark and historical averages. The results of the various irrigation routines and associated yield penalties will be valuable for future consideration by local water managers to be informed about the potential value of irrigation saving technologies and irrigation practices. Moreover, the routines offer the hyper-resolution LSM community a range of irrigation routines to better constrain irrigation decision-making at critical temporal (daily) and spatial scales (< 1 km).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop requirements, Irrig. Drain. Pap. No. 56, FAO, Rome, Italy, doi:10.1016/j.eja.2010.12.001, 1998.
    • Butler, J. J., Whittemore, D. O., Wilson, B. B., and Bohling, G. C.: A new approach for assessing the future of aquifers supporting irrigated agriculture, Geophys. Res. Lett., 43, 2004-2010, doi:10.1002/2016gl067879, 2016.
    • Chaney, N. W., Wood, E. F., McBratney, A. B., Hempel, J. W., Nauman, T. W., Brungard, C. W., and Odgers, N. P.: POLARIS: A 30-meter probabilistic soil series map of the contiguous United States, Geoderma, 274, 54-67, doi:10.1016/j.geoderma.2016.03.025, 2016.
    • Dai, A.: Drought under global warming: A review, Wiley Interdiscip. Rev. Clim. Chang., 2, 45-65, doi:10.1002/wcc.81, 2011.
    • de Vrese, P., Hagemann, S., and Claussen, M.: Asian irrigation, African rain: Remote impacts of irrigation, Geophys. Res. Lett., 43, 3737-3745, doi:10.1002/2016gl068146, 2016.
    • Döll, P. and Siebert, S.: Global modeling of irrigation water requirements Petra Do, Water Resour., 38, 8-1-8-10, doi:10.1029/2001WR000355, 2002.
    • FAO - Food and Agriculture Organization of the United Nations: AQUASTAT: FAO's information system of water and agriculture, http://www.fao.org/nr/water/aquastat/data/query/index. html?lang=en (last access: 15 August 2016), 2008.
    • FAO - Food and Agriculture Organization of the United Nations: How to feed the world in 2050, Rome, Italy, 2009.
    • Farmaha, B. S., Lobell, D. B., Boone, K. E., Cassman, K. G., Yang, S. H., and Grassini, P.: Contribution of persistent factors to yield gaps in high-yield irrigated maize, Field Crops Res., 186, 124- 132, 2016.
    • Findell, K. L. and Eltahir, E. A. B.: An analysis of the soil moisturerainfall feedback, based on direct observations from Illinois, Water Resour. Res., 33, 725-735, doi:10.1029/96wr03756, 1997.
    • Foster, T., Brozovic´, N., and Butler, A. P.: Modeling irrigation behavior in groundwater systems, Water Resour. Res., 50, 6370- 6389, doi:10.1002/2014WR015620, 2014.
    • Gibson, J. P.: Estimation of Deep Drainage Differences between Till and No-Till Irrigated Agriculture, MS Thesis, University of Nebraska-Lincoln, Lincoln, NE, 2015.
    • Gibson, K. E. B.: More Crop per Drop: Benchmarking On-Farm Irrigation Water Use for Crop Production, MS Thesis, University of Nebraska-Lincoln, Lincoln, NE, 2016.
    • Global Yield Gap and Water Productivity Atlas: available at: http: //www.yieldgap.org, last access: 7 July 2016.
    • Grassini, P., Yang, H. S., and Cassman, K. G.: Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions, Agr. Forest Meteorol., 149, 1254- 1265, doi:10.1016/j.agrformet.2009.02.012, 2009.
    • Grassini, P., Yang, H. S., Irmak, S., Thorburn, J., Burr, C., and Cassman, K. G.: High-yield irrigated maize in the Western US Corn Belt: II. Irrigation management and crop water productivity, Field Crop. Res., 120, 133-141, 2011.
    • Grassini, P., Torrion, J. A., Cassman, K. G., and Specht, J. E.: Benchmarking yield and efficiency of corn & soybean cropping systems in Nebraska, University of Nebraska-Lincoln, Lincoln, NE, 2013.
    • Grassini, P., Torrion, J. A., Cassman, K., Specht, J., Grassini, P., Torrion, J. A., Cassman, K. G., Yang, H. S., and Specht, J. E.: Drivers of spatial and temporal variation in soybean yield and irrigation requirements in the western US Corn Belt Drivers of spatial and temporal variation in soybean yield and irrigation requirements in the western US Corn Belt, Field Crops Res., 163, 32-46, doi:10.1016/j.fcr.2014.04.005, 2014.
    • Grassini, P., Torrion, J. A., Yang, H. S., Rees, J., Andersen, D., Cassman, K. G., and Specht, J. E.: Soybean yield gaps and water productivity in the western U.S. Corn Belt, Field Crop. Res., 179, 150-163, 2015.
    • Hedley, C. B. and Yule, I. J.: A method for spatial prediction of daily soil water status for precise irrigation scheduling, Agr. Water Manage., 96, 1737-1745, doi:10.1016/j.agwat.2009.07.009, 2009.
    • Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., and Bradbury, S.: Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling, Geoderma, 199, 22-29, doi:10.1016/j.geoderma.2012.07.018, 2013.
    • HPRCC: Weather and Climate Data via an Automated Weather Data Network from the NOAA High Plains Climate Center (HPRCC), High Plains Reg. Clim. Center, Univ. NebraskaLincoln, Lincoln, NE, available at: http://www.hprcc.unl.edu/ awdn/, last access: 7 August 2016.
    • Irmak, S., Burgert, M. J., Yang, H. S., Cassman, K. G., Walters, D. T., Rathje, W. R., Payero, J. O., Grassini, P., Kuzila, M. S., Brunkhorst, K. J., Van DeWalle, B., Rees, J. M., Kranz, W. L., Eisenhauer, D. E., Shapiro, C. A., Zoubek, G. L., and Teichmeier, G. J.: Large scale on-farm implementation of soil moisture-based irrigation management strategies for increasing maize water productivity, T. ASABE, 55, 881-894, 2012.
    • Irmak, S., Payero, J. O., VanDeWalle, B., Rees, J., and Zoubek, G. L.: Principles and Operational Characteristics of Watermark Granular Matrix Sensor to Measure Soil Water Status and Its Practical Applications for Irrigation Management in Various Soil Textures, Biol. Syst. Eng. Pap. Publ. Pap. 332, University of Nebraska-Lincoln, Lincoln, NE, 1-14, 2014.
    • Korus, J. T., Howard, L. M., Young, A. R., Divine, D. P., Burbach, M. E., Jess, M. J. and Hallum, D. R.: The Groundwater Atlas of Nebraska, 3rd Edn., Conservation and Survey Division, Resource Atlas No. 4b/2013, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, 2013.
    • Koster, R. D., Dirmeyer, P. A., Guo, Z. C., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y. K., Yamada, T., and Team, G.: Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138-1140, doi:10.1126/science.1100217, 2004.
    • Kranz, W. L., Irmak, S., Martin, D. L., Shaver, T. M., and van Donk, S. J.: Variable Rate Application of Irrigation Water with Center Pivots, Nebraska Ext., available at: http://extension.unl.edu/ publications (last access: 1 August 2016), 2014.
    • Kucharik, C. J.: Evaluation of a Process-Based Agro-Ecosystem Model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the Interannual Variability in Maize Yield, Earth Interact., 7, 1-33, 2003.
    • Kumar, C. P.: Climate Change and Its Impact on Groundwater Resources, Int. J. Eng. Sci., 1, 43-60, 2012.
    • Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F.: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes, Hydrol. Earth Syst. Sci., 19, 4463-4478, doi:10.5194/hess-19-4463-2015, 2015.
    • Mekonnen, M. M. and Hoekstra, A. Y.: The green, blue and grey water footprint of crops and derived crop products, Hydrol. Earth Syst. Sci., 15, 1577-1600, doi:10.5194/hess-15-1577- 2011, 2011.
    • Molden, D. (Ed.): Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscane/International Water Management Institute, London, Colombo, Sri Lanka, 2007.
    • Passioura, J. B.: Grain yield, harvest index, and water use of wheat, J. Aust. Inst. Agr. Sci., 43, 117-120, 1977.
    • Santanello, J. A., Peters-Lidard, C. D., and Kumar, S. V: Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction, J. Hydrometeorol., 12, 766-786, doi:10.1175/jhm-d-10-05014.1, 2011.
    • Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., and McMahon, P. B.: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320-9325, doi:10.1073/pnas.1200311109, 2012.
    • Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163-176, 2001.
    • Schultz, B., Thatte, C. D., and Labhsetwar, V. K.: Irrigation and drainage: Main contributors to global food production, Irrig. Drain., 54, 263-278, 2005.
    • Sharma, V. and Irmak, S.: Mapping spatially interpolated precipitation, reference evapotranspiration, actual crop evapotranspiration, and net irrigation requirements in Nebraska: Part II Actual evapotranspiration and net irrigation requirements, T. ASABE, 55, 923-936, doi:10.13031/2013.41524, 2012.
    • Shuttleworth, W. J.: chap. 4: Evaporation, in: Handbook of Hydrology, edited by: Maidment, D., McGraw-Hill, New York, 1993.
    • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation - A global inventory, Hydrol. Earth Syst. Sci., 14, 1863-1880, doi:10.5194/hess-14-1863-2010, 2010.
    • Šimu˚nek, J., Šejna, M., Saito, H., Sakai, M., and van Genuchten, M. T.: The HYDRUS-1D Software Package for Simulating the OneDimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media (v.4.17), Dept. Environ. Sci. CA, University of California Riverside, Riverside, California, 2013.
    • Soil Survey Staff: Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd Edn., Handbook 436, Natural Resources Conservation Service, US Department of Agriculture, available at: http://www.nrcs.usda.gov/ Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf, last access: 7 August 2016.
    • SPNRD: Spring 2013 Groundwater level report, http://www.spnrd. org/Html/resources_reports.html (last access: 15 July 2016), 2013.
    • SPRND: available at: http://www.spnrd.org/index.html, last access: 1 March 2016.
    • Szilágyi, J. and Jozsa, J.: MODIS-aided statewide net groundwaterrecharge estimation in Nebraska, Groundwater, 51, 735-744, doi:10.1111/j.1745-6584.2012.01019.x, 2013.
    • USDA: Farm and Ranch Irrigation Survey (2013), Washington, D.C., available at: www.agcensus.usda.gov/Publications/2012/ Online_Resources/Ag_Census_Web_Maps/Overview/ (last access: 21 June 2016), 2014.
    • USDA-NASS: 2012 Census of Agriculture - Nebraska State and County Data, available at:https://www.agcensus.usda.gov/ Publications/2012/Full_Report/Volume_1,_Chapter_1_State_ Level/Nebraska/nev1.pdf (last access: 15 June 2016), 2014.
    • Wada, Y., Van Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable groundwater sustaining irrigation: A global assessment, Water Resour. Res., 48, W00L06, doi:10.1029/2011WR010562, 2012.
    • Wang, T., Franz, T. E., Yue, W., Szilagyi, J., Zlotnik, V. A., You, J., Chen, X., Shulski, M. D., and Young, A.: Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network, J. Hydrol., 533, 250-265, 2016.
    • Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Doll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffe, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, doi:10.1029/2010wr010090, 2011.
    • Yang, H. S., Dobermann, A., Cassman, K. G., Walters, D. T., and Grassini, P.: Hybrid-Maize (v.2013.4). A simulation model for corn growth and yield, Nebraska Coop. Extension, Univ. Nebraska-Lincoln, Lincoln, NE, 2013.
    • Young, A. R., Burbach, M. E., and Howard, L. M.: Nebraska statewide groundwater-level monitoring report: Nebraska water survey paper No. 81, available at: http://nlcs1.nlc.state.ne.us/ epubs/U2375/B002.0081-2013.pdf (last access: 15 June 2016), 2013.
    • Young, A. R., Burbach, M. E., and Howard, L. M.: Nebraska statewide groundwater-level monitoring report, Nebraska water survey paper No. 82, University of Nebraska-Lincoln, Lincoln, NE, 2014.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article