LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Harlow, R. Chawn (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA170-171, Earthwork. Foundations, Environmental engineering, TA715-787
The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Afsar, M. N.: Precision Dielectric Measurements of Nonpolar Polymers in the Millimeter Wavelength Range, IEEE T. Microw. Theory, 33, 1410-1415, doi:10.1109/TMTT.1985.1133232, 1985.
    • Baran, A. J.: A new application of a multifrequency submillimeter radiometer in determining the microphysical and macrophysical properties of volcanic plumes: A sensitivity study, J. Geophys. Res.-Atmos., 117, D00U18, doi:10.1029/2011JD016781, 2012.
    • Bizzari, B., Bizzarri, B., Amato, U., Bates, J., Benesch, W., Buehler, S., Capaldo, M., Cervino, M., Cuomo, V., Leonibus, L., Desbois, M., Dietrich, S., Evans, F., Eymard, L., Gasiewski, A., Gustafsson, N., Heygster, G., Klein, M., Kunzi, K., Levizzani, V., Liberti, G. L., Lopez-Baeza, E., Menzel, P., Miao, J., Mugnai, A., Pagano, P., Pailleux, J., Pardo, J., Porcu, F., Prigent, C., Prodi, F., Rizzi, R., Rochard, G., Roesli, H. P. Serio, C., Smith, W., Speranza, A., Staelin, D., Sutera, A., Tsou, J.-J., Velden, C., and Visconti, G.: GOMAS - Geostationary Observatory for Microwave Atmospheric Sounding, submitted to ESA in response to the call for ideas for the Next Earth Explorer Core Missions, 2005.
    • Buehler, S. A., Jiménez, C., Evans, K. F., Eriksson, P., Rydberg, B., Heymsfield, A. J., Stubenrauch, C. J., Lohmann, U., Emde, C., John, V. O., Sreerekha, T. R., and Davis, C. P.: A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude, Q. J. Roy. Meteor. Soc., 133, 109-128, doi:10.1002/qj.143, 2007.
    • Eriksson, P., Buehler, S., Davis, C., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551-1558, doi:10.1016/j.jqsrt.2011.03.001, 2011.
    • Evans, K. and Stephens, G.: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II: remote sensing of ice clouds, J. Atmos. Sci., 52, 2058-2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2, 1995.
    • Evans, K. F., Walter, S. J., Heymsfield, A. J., and Deeter, M. N.: Modeling of submillimeter passive remote sensing of cirrus clouds, J. Appl. Meteorol., 37, 184-205, doi:10.1175/1520- 0450(1998)037<0184:MOSPRS>2.0.CO;2, 1998.
    • Evans, K. F., Wang, J. R., Racette, P. E., Heymsfield, G., and Li, L.: Ice Cloud Retrievals and Analysis with the Compact Scanning Submillimeter Imaging Radiometer and the Cloud Radar System during CRYSTAL FACE, J. Appl. Meteorol., 44, 839-859, doi:10.1175/JAM2250.1, 2005.
    • Evans, K. F., Wang, J. R., O'C Starr, D., Heymsfield, G., Li, L., Tian, L., Lawson, R. P., Heymsfield, A. J., and Bansemer, A.: Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4, Atmos. Meas. Tech., 5, 2277-2306, doi:10.5194/amt5-2277-2012, 2012.
    • Han, Y. and Westwater, E. R.: Analysis and improvement of tipping calibration for ground-based microwave radiometers, IEEE T. Geosci. Remote Sens., 38, 1260-1276, doi:10.1109/36.843018, 2000.
    • Hejase, J. A., Paladhi, P. R., and Chahal, P. P.: Terahertz Characterization of Dielectric Substrates for Component Design and Nondestructive Evaluation of Packages, IEEE T. Compon. Pack. T., 1, 1685-1694, doi:10.1109/TCPMT.2011.2163632, 2011.
    • Hersman, M. S. and Poe, G.: Sensitivity of the total power radiometer with periodic absolute calibration, IEEE T. Microw. Theory, 29, 32-40, doi:10.1109/TMTT.1981.1130283, 1981.
    • Hewison, T.: The design of Deimos: a microwave radiometer with channels at 23.8 GHz and 50.3 GHz for the UK Met. Research Flight C-130 aircraft, in: International Geoscience and Remote Sensing Symposium 'Quantitative Remote Sensing for Science and Applications', Firenze, Italy, vol. 3, 2261-2263, doi:10.1109/IGARSS.1995.524165, 1995.
    • Jiménez, C., Buehler, S., Rydberg, B., Eriksson, P., and Evans, K.: Performance simulations for a submillimetre-wave satellite instrument to measure cloud ice, Q. J. Roy. Meteor. Soc., 133, 129- 149, doi:10.1002/qj.134, 2007.
    • Jin, Y.-S., Kim, G.-J., and Jeon, S.-G.: Terahertz dielectric properties of polymers, J. Korean Phys. Soc., 49, 513-517, 2006.
    • Jones, D.: Validation of scattering microwave radiative transfer models using an aircraft radiometer and ground-based radar, Ph.D thesis, University of Reading, 1995.
    • Kangas, V., D'Addio, S., Betto, M., Barre, H., Loiselet, M., and Mason, G.: Metop Second Generation microwave sounding and microwave imaging missions, in: Proceedings of the 2012 EUMETSAT Meteorological Satellite Conference, Sopot, Poland, 3-7 September, 2012.
    • Lee, C., Evans, K. F., Nolt, I. G., Smith, W. L., and Vanek, M. D.: Far-infrared remote sensing measurements of cirrus clouds during AFWEX, Proc. SPIE 4539, Remote Sensing of Clouds and the Atmosphere VI, 26, 4 February 2002, doi:10.1117/12.454461, 2002.
    • McGrath, A. and Hewison, T.: Measuring the accuracy of MARSS-an airborne microwave radiometer, J. Atmos. Ocean. Technol., 18, 2003-2012, doi:10.1175/1520- 0426(2001)018<2003:MTAOMA>2.0.CO;2, 2001.
    • Murk, A., Duric, A., and Patt, F.: Characterization of ALMA calibration targets, in: Proc. 19th International Symposium on Space Terahertz Technology, Groningen, 28-30 April 2008, 530-533, 2008.
    • Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman, J., Witt, G., Eriksson, P., Jiménez, C., Megie, G., de la Noë, J., Ricaud, P., Baron, P., Pardo, J. R., Hauchcorne, A., Llewellyn, E. J., Degenstein, D. A., Gattinger, R. L., Lloyd, N. D., Evans, W. F., McDade, I. C., Haley, C. S., Sioris, C., von Savigny, C., Solheim, B. H., McConnell, J. C., Strong, K., Richardson, E. H., Leppelmeier, G. W., Kyrölä, E., Auvinen, H., and Oikarinen, L.: An overview of the Odin atmospheric mission, Canad. J. Phys., 80, 309-319, doi:10.1139/p01-157, 2002.
    • Rosenkranz, P. W.: Absorption of microwaves by atmospheric gases, in: Atmospheric remote sensing by microwave radiometry, edited by: Janssen, M. A., 37-90, John Wiley & Sons, Inc., 1993.
    • Rosenkranz, P. W.: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919- 928, doi:10.1029/98RS01182, 1998.
    • Rothman, L., Gordon, I., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P., Birk, M., Bizzocchi, L., Boudon, V., Brown, L., Campargue, A., Chance, K., Cohen, E., Coudert, L., Devi, V., Drouin, B., Fayt, A., Flaud, J.-M., Gamache, R., Harrison, J., Hartmann, J.-M., Hill, C., Hodges, J., Jacquemart, D., Jolly, A., Lamouroux, J., Roy, R. L., Li, G., Long, D., Lyulin, O., Mackie, C., Massie, S., Mikhailenko, S., Müller, H., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E., Richard, C., Smith, M., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G., Tyuterev, V., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4-50, doi:10.1016/j.jqsrt.2013.07.002, 2013.
    • Staelin, D., Gasiewski, A., Kerekes, J., Shields, M., and Solman III, F.: Concept proposal for a Geostationary Microwave (GEM) Observatory, prepared for the NASA/NOAA Advanced Geostationary Sensor (AGS) Program, MIT, Lexington, MA, USA, p. 23, 1998.
    • Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave remote sensing active and passive volume 1, Addison-Wesley, p. 247, 1981.
    • Waliser, D. E.. Li, J.-L. F.. Woods, C. P., Austin, R. T. Bacmeister, J., Chern, J., Del Genio, A., Jiang, J. H., Kuang, Z., Meng, H., Minnis, P., Platnick, S., Rossow, W. B., Stephens, G. L., SunMack, S., Tao, W.-K., Tompkins, A. M., Vane, D. G., Walker, C., and Wu, D.: Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys.-Res., 114, D00A21, doi:10.1029/2008JD010015, 2009.
    • Wang, J. R., Liu, G., Spinhirne, J. D., Racette, P., and Hart, W. D.: Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurements, J. Geophys. Res.-Atmos., 106, 15251-15263, doi:10.1029/2000JD900262, 2001.
    • Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Snyder, W. V., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite, IEEE T. Geosci. Remote Sens., 44, 1075-1092, doi:10.1109/TGRS.2006.873771, 2006.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article