Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
K. A. Prather; C. J. Gaston; L. M. Russell; S. Liu; D. A. Day; O. S. Ryder; T. H. Bertram; T. P. Riedel; J. A. Thornton (2011)
Publisher: Copernicus Publications
Journal: Atmospheric Chemistry and Physics Discussions
Languages: English
Types: Article
Subjects: Chemistry, Geophysics. Cosmic physics, DOAJ:Earth and Environmental Sciences, QD1-999, Physics, GE1-350, G, DOAJ:Environmental Sciences, Geography. Anthropology. Recreation, Environmental sciences, QC1-999, QC801-809
Direct measurements of N2O5 reactivity on ambient aerosol particles were made during September 2009 at the Scripps Institution of Oceanography (SIO) Pier facility located in La Jolla, CA. N2O5 reactivity measurements were made using a custom flow reactor and the particle modulation technique alongside measurements of aerosol particle size distributions and non-refractory composition. The pseudo-first order rate coefficients derived from the particle modulation technique and the particle surface area concentrations were used to determine the population average N2O5 reaction probability, γ(N2O5), approximately every 50 min. Insufficient environmental controls within the instrumentation trailer led us to restrict our analysis primarily to nighttime measurements. Within this subset of data, γ(N2O5) ranged from <0.001 to 0.029 and showed significant day-to-day variations. We compare these data to a recent parameterization that utilizes aerosol composition measurements and an aerosol thermodynamics model. The parameterization captures several aspects of the measurements with similar general trends over the time series. However, the parameterization persistently overestimates the measurements by a factor of 1.5–3 and does not illustrate the same extent of variability. Assuming chloride is internally mixed across the particle population leads to the largest overestimates. Removing this assumption only partially reduces the discrepancies, suggesting that other particle characteristics that can suppress γ(N2O5) are important, such as organic coatings or non-aqueous particles. The largest apparent driver of day-to-day variability in the measured γ(N2O5) at this site was the particle nitrate loading, as inferred from both the measured particle composition and the parameterizations. The relative change in measured γ(N2O5) as a function of particle nitrate loading appears to be consistent with expectations based on laboratory data, providing direct support for the atmospheric importance of the so-called "nitrate effect".
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (117O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043-5056, doi:10.5194/acp-9-5043-2009, 2009.
    • Baron, P. A. and Willeke, K.: Aerosol Measurement: Principles, Techniques, and Applications, 2 edn., Wiley-Interscience, New York, USA, 2001.
    • Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO2, from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res.- Atmos., 102, 3795-3804, doi:10.1029/96jd03057, 1997.
    • Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351-8363, doi:10.5194/acp-9-8351-2009, 2009.
    • Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct measurement of N2O5 reactivity on ambient particles, Atmos. Meas. Tech., 2, 231-242, doi:10.5194/amt-2-231-2009, 2009a.
    • Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct observations of N2O5 reactivity on ambient aerosol particles, Geophys. Res. Lett., 36, L19803, doi:10.1029/2009gl040248, 2009b.
    • Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J., Lerner, B. M., Jakoubek, R., Middlebrook, A. M., DeGouw, J. A., Warneke, C., Goldan, P. D., Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn, P. K., Bates, T. S., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Nighttime removal of NOx in the summer marine boundary layer, Geophys. Res. Lett., 31, L07108, doi:10.1029/2004gl019412, 2004.
    • Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67-70, doi:10.1126/science.1120120, 2006.
    • Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res.-Atmos., 114, D00F10, doi:10.1029/2008jd011679, 2009.
    • Cosman, L. M. and Bertram, A. K.: Reactive uptake of N2O5 on aqueous H2SO4 solutions coated with 1-component and 2- component monolayers, J. Phys. Chem. A, 112, 4625-4635, doi:10.1021/jp8005469, 2008.
    • Cosman, L. M., Knopf, D. A., and Bertram, A. K.: N2O5 reactive uptake on aqueous sulfuric acid solutions coated with branched and straight-chain insoluble organic surfactants, J. Phys. Chem. A, 112, 2386-2396, doi:10.1021/jp710685r, 2008.
    • Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8, 5295- 5311, doi:10.5194/acp-8-5295-2008, 2008.
    • Dentener, F. J. and Crutzen, P. J.: Reaction of N2O5 on tropospheric aerosols - Impacts on the global distributions of NOx, O3, AND OH, J. Geophys. Res.-Atmos., 98, 7149-7163, doi:10.1029/92jd02979, 1993.
    • Engelhart, G. J., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N. M., and Pandis, S. N.: Water content of aged aerosol, Atmos. Chem. Phys., 11, 911-920, doi:10.5194/acp-11- 911-2011, 2011.
    • Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N.: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2, Nature, 337, 241-244, doi:10.1038/337241a0, 1989.
    • Folkers, M., Mentel, T. F., and Wahner, A.: Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5, Geophys. Res. Lett., 30, 1644, doi:10.1029/2003gl017168, 2003.
    • Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N2O5 on sub-micron sulfate aerosols, Phys. Chem. Chem. Phys., 5, 3453-3463, doi:10.1039/b301827j, 2003.
    • Hu, J. H. and Abbatt, J. P. D.: Reaction probabilities for N2O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature, J. Phys. Chem. A, 101, 871-878, doi:10.1021/jp9627436, 1997.
    • Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131-2159, doi:10.1016/s1352- 2310(99)00462-8, 2000.
    • Kane, S. M., Caloz, F., and Leu, M. T.: Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 aerosols, J. Phys. Chem. A, 105, 6465-6470, doi:10.1021/jp010490x, 2001.
    • Kercher, J. P., Riedel, T. P., and Thornton, J. A.: Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry, Atmos. Meas. Tech., 2, 193-204, doi:10.5194/amt-2-193-2009, 2009.
    • Liu, S., Day, D. A., Shields, J. E., and Russell, L. M.: Ozonedriven photochemical formation of carboxylic acid groups from alkane groups, Atmos. Chem. Phys. Discuss., 11, 7189-7233, doi:10.5194/acpd-11-7189-2011, 2011.
    • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric Chemistry - a global perspective, J. Geophys. Res.-Oc. Atmos., 86, 7210-7254, doi:10.1029/JC086iC08p07210, 1981.
    • McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol, Atmos. Chem. Phys., 6, 1635-1644, doi:10.5194/acp-6-1635-2006, 2006.
    • Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem. Phys., 1, 5451-5457, doi:10.1039/a905338g, 1999.
    • Mozurkewich, M. and Calvert, J. G.: Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res.-Atmos., 93, 15889- 15896, doi:10.1029/JD093iD12p15889, 1988.
    • Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 19802020, Atmos. Chem. Phys., 7, 4419-4444, doi:10.5194/acp-7-4419-2007, 2007.
    • Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat. Geosci., 1, 324-328, doi:10.1038/ngeo177, 2008.
    • Park, S.-C., Burden, D. K., and Nathanson, G. M.: The inhibition of N2O5 hydrolysis in sulfuric acid by 1-butanol and 1- hexanol surfactant coatings, J. Phys. Chem. A, 111, 2921-2929, doi:10.1021/jp068228h, 2007.
    • Roberts, J. M., Osthoff, H. D., Brown, S. S., Ravishankara, A. R., Coffman, D., Quinn, P., and Bates, T.: Laboratory studies of products of N2O5 uptake on Cl− containing substrates, Geophys. Res. Lett., 36, L20808, doi:10.1029/2009gl040448, 2009.
    • Robinson, G. N., Worsnop, D. R., Jayne, J. T., Kolb, C. E., and Davidovits, P.: Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions, J. Geophys. Res.-Atmos., 102, 3583- 3601, doi:10.1029/96jd03457, 1997.
    • Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E.: Improved Attribution of Climate Forcing to Emissions, Science, 326, 716-718, doi:10.1126/science.1174760, 2009.
    • Thornton, J. A. and Abbatt, J. P. D.: N2O5 reaction on submicron sea salt aerosol: Kinetics, products, and the effect of surface active organics, J. Phys. Chem. A, 109, 10004-10012, doi:10.1021/jp054183t, 2005.
    • Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size, Phys. Chem. Chem. Phys., 5, 4593-4603, doi:10.1039/b307498f, 2003.
    • Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464, 271-274, doi:10.1038/nature08905, 2010.
    • Wahner, A., Mentel, T. F., Sohn, M., and Stier, J.: Heterogeneous reaction of N2O5 on sodium nitrate aerosol, J. Geophys. Res.- Atmos., 103, 31103-31112, doi:10.1029/1998jd100022, 1998.
    • Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems including the ions H+, NH+, Na+, SO24−, 4 NO3−,Cl−, Br−, and H2O, J. Geophys. Res.-Atmos., 107, 4207, doi:10.1029/2001jd000451, 2002.
    • Yienger, J. J.: An evaluation of chemistry's role in the winterspring ozone maximum found in the northern midlatitude free troposphere, J. Geophys. Res.-Atmos., 104, 8329-8329, doi:10.1029/1999jd900140, 1999.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | CAREER: In Situ Constraints...

Cite this article