LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sproles, Eric A.; Roth, Travis R.; Nolin, Anne W. (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
In the Pacific Northwest, USA, the extraordinarily low snowpacks of winters 2013–2014 and 2014–2015 stressed regional water resources and the social-environmental system. We introduce two new approaches to better understand how seasonal snow water storage during these two winters would compare to snow water storage under warmer climate conditions. The first approach calculates a spatial-probabilistic metric representing the likelihood that the snow water storage of 2013–2014 and 2014–2015 would occur under +2 °C perturbed climate conditions. We computed snow water storage (basin-wide and across elevations) and the ratio of snow water equivalent to cumulative precipitation (across elevations) for the McKenzie River basin (3041 km2), a major tributary to the Willamette River in Oregon, USA. We applied these computations to calculate the occurrence probability for similarly low snow water storage under climate warming. Results suggest that, relative to +2 °C conditions, basin-wide snow water storage during winter 2013–2014 would be above average, while that of winter 2014–2015 would be far below average. Snow water storage on 1 April corresponds to a 42 % (2013–2014) and 92 % (2014–2015) probability of being met or exceeded in any given year. The second approach introduces the concept of snow analogs to improve the anticipatory capacity of climate change impacts on snow-derived water resources. The use of a spatial-probabilistic approach and snow analogs provide new methods of assessing basin-wide snow water storage in a non-stationary climate and are readily applicable in other snow-dominated watersheds.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abatzoglou, J. T., Rupp, D. E., and Mote, P. W.: Seasonal climate variability and change in the Pacific Northwest of the United States, J. Climate, 27, 2125-2142, 2014.
    • Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of global climate change for snowmelt hydrology in the twenty-first century, Hydrol. Process., 23, 962-972, doi:10.1002/hyp.7201, 2009.
    • Associated Press: Drought has city near Eugene imposing water restrictions, The Washington Times, available at: http://www.washingtontimes.com/news/2015/jul/29/drought, last access: 15 September 2016, 29 July 2015.
    • Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303-309, doi:10.1038/nature04141, 2005.
    • Brooks, J. R., Wigington, P. J., Phillips, D. L., Comeleo, R., and Coulombe, R.: Willamette River Basin surface water isoscape ( 18O and 2H): temporal changes of source water within the river, Ecosphere, 3, 39, doi:10.1890/ES11-00338.1, 2012.
    • Brown, D. P. and Kipfmueller, K. F.: Pacific Climate Forcing of Multidecadal Springtime Minimum Temperature Variability in the Western United States, Ann. Assoc. Am. Geogr., 102, 521- 530, doi:10.1080/00045608.2011.627052, 2012.
    • Clow, D. W.: Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming, J. Climate, 23, 2293- 2306, 2010.
    • Cooper, M. G., Nolin, A. W., and Safeeq, M.: Testing the recent snow drought as an analog for climate warming sensitivity of Cascades snowpacks, Environ. Res. Lett., 11, 84009, doi:10.1088/1748-9326/11/8/084009, 2016.
    • Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031-2064, 2008.
    • Dingman, S. L.: Physical hydrology, Prentice Hall, Upper Saddle River, NJ, 2002.
    • Dozier, J.: Mountain hydrology, snow color, and the fourth paradigm, Eos T. Am. Geophys. Un. USA, 92, 373, doi:10.1029/2011EO430001, 2011.
    • Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., Mickelson, K. E. B., Lee, S.-Y., and Lettenmaier, D. P.: Implications of 21st century climate change for the hydrology of Washington State, Climatic Change, 102, 225-260, 2010.
    • Fritze, H., Stewart, I. T., and Pebesma, E.: Shifts in Western North American Snowmelt Runoff Regimes for the Recent Warm Decades, J. Hydrometeorol., 12, 989-1006, doi:10.1175/2011jhm1360.1, 2011.
    • Hall, B.: Something in the water: Complaints about taste trickle in, Corvallis Gazette-Times, available at: http://www.gazettetimes.com/news/something-in, last access: 15 September 2016, 5 August 2015.
    • Hallegatte, S., Hourcade, J.-C., and Ambrosi, P.: Using climate analogues for assessing climate change economic impacts in urban areas, Climatic Change, 82, 47-60, 2007.
    • Hamlet, A. F.: Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America, Hydrol. Earth Syst. Sci., 15, 1427-1443, doi:10.5194/hess-15-1427-2011, 2011.
    • Hulse, D., Gregory, S., and Baker, J. P. (Eds.): Willamette River Basin planning atlas: trajectories of environmental and ecological change, Oregon State University Press, 2002.
    • Jefferson, A., Grant, G., and Rose, T.: Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades, Water Resour. Res., 42, W12411, doi:10.1029/2005WR004812, 2006.
    • Jefferson, A., Nolin, A., Lewis, S., and Tague, C.: Hydrogeologic controls on streamflow sensitivity to climate variation, Hydrol. Process., 22, 4371-4385, doi:10.1002/hyp.7041, 2008.
    • Kapnick, S. and Hall, A.: Causes of recent changes in western North American snowpack, Clim. Dynam., 38, 1885-1899, 2012.
    • Legates, D. R. and McCabe, G. J.: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233-241, doi:10.1029/1998WR900018, 1999.
    • Leibowitz, S. G., Comeleo, R. L., Wigington Jr., P. J., Weaver, C. P., Morefield, P. E., Sproles, E. A., and Ebersole, J. L.: Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA, Hydrol. Earth Syst. Sci., 18, 3367- 3392, doi:10.5194/hess-18-3367-2014, 2014.
    • Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System (SnowModel), J. Hydrometeorol., 7, 1259-1276, doi:10.1175/JHM548.1, 2006a.
    • Liston, G. E. and Elder, K.: A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet), J. Hydrometeorol., 7, 217-234, doi:10.1175/JHM486.1, 2006b.
    • Luce, C. H. and Holden, Z. A.: Declining annual streamflow distributions in the Pacific Northwest United States, 1948-2006, Geophys. Res. Lett., 36, L16401, doi:10.1029/2009GL039407, 2009.
    • Luce, C. H., Lopez-Burgos, V., and Holden, Z.: Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models, Water Resour. Res., 50, 9447-9462. 2014.
    • Margulis, S. A., Cortés, G., Girotto, M., Huning, L. S., Li, D., and Durand, M.: Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery, Geophys. Res. Lett., 43, 6341-6349, 2016.
    • McLeman, R. A. and Hunter, L. M.: Migration in the context of vulnerability and adaptation to climate change: insights from analogues, Wiley Interdisciplinary Reviews: Climate Change, 1, 450-461, doi:10.1002/wcc.51, 2010.
    • Meunier, A.: Oregon's wildfire season is over for 2015, Forestry Department says, The Oregonian, available at: http://www.oregonlive.com/wildfires/index.ssf/2015/10/, last access: 15 September 2016, 25 October 2015.
    • Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573-574, doi:10.1126/science.1151915, 2008.
    • Molotch, N. P. and Bales, R. C.: SNOTEL representativeness in the Rio Grande headwaters on the basis of physiographics and remotely sensed snow cover persistence, Hydrol. Process., 20, 723-739, 2006.
    • Montoya, E. L., Dozier, J., and Meiring, W.: Biases of April 1 snow water equivalent records in the Sierra Nevada and their associations with large-scale climate indices, Geophys. Res. Lett., 41, 5912-5918, 2014.
    • Morical, M.: Is Hoodoo done? Barely-there snow has Oregon ski areas wondering if season is over, The Bulletin, Bend, OR, available at: http://www.bendbulletin.com/outdoors/ 2854005-151/barely-there, last access: 15 September 2016, 11 February 2015.
    • Mote, P. W.: Climate-Driven Variability and Trends in Mountain Snowpack in Western North America, J. Climate, 19, 6209- 6220, doi:10.1175/JCLI3971.1, 2006.
    • Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining Mountain Snowpack in Weatern North America, B. Am. Meteorol. Soc., 86, 39-49, doi:10.1175/BAMS-86-1-39, 2005.
    • Mote, P. W., Rupp, D. E., Li, S., Sharp, D. J., Otto, F., Uhe, P. F., Xiao, M., Lettenmaier, D. P., Cullen, H., and Allen, M. R.: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States, Geophys. Res. Lett., 43, 10980- 10988, doi:10.1002/2016GL069965, 2016.
    • Nash, J. E. and Sutcliffe, J. V: River flow forecasting through conceptual models part I: a discussion of principles, J. Hydrol., 10, 282-290, doi:10.1016/0022-1694(70)90255-6, 1970.
    • National Resource Conservation Service: Weekly Snowpack / Drought Monitor Update, Washington, D.C., 2014.
    • National Resource Conservation Service: NRCS SNOTEL data, edited by: United States Department of Agriculture, available at: https://www.nrcs.usda.gov/wps/portal/nrcs/main/or/snow/, last access: 9 September 2015a.
    • National Resource Conservation Service: Weekly Water and Climate Update, Washington, D.C., available at: http://www.wcc. nrcs.usda.gov/ftpref/support/drought/dmrpt-20150326.pdf, last access: 15 September 2016, 2015b.
    • Nelson, N., Geltzer, A., and Hilgartner, S.: Introduction: the anticipatory state: making policy-relevant knowledge about the future, Science and Public Policy, 35, 546-550, doi:10.3152/030234208X370648, 2008.
    • Nolin, A. W.: Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA, Mt. Res. Dev., 32, S35-S46, doi:10.1659/mrd-journal-d-11- 00038.s1, 2012.
    • Nolin, A. W. and Daly, C.: Mapping “At Risk” Snow in the Pacific Northwest, J. Hydrometeorol., 7, 1164-1171, 2006.
    • Nolin, A. W., Sproles, E. A., and Brown, A.: Climate change impacts on snow and water resources in the Columbia, Willamette, and McKenzie River Basins, USA: A nested watershed study, in: Transboundary River Governance in the Face of Uncertainty: The Columbia River Treaty, edited by: Cosens, B., Oregon State University Press, Corvallis, OR, 2012.
    • Oregon Department of Fish and Wildlife (ODFW): Higher water temperatures primary cause of early spring Chinook mortality, ODFW Resources, News Releases, available at: http://www. dfw.state.or.us/news/2015/june/061815.asp, last access: 18 July 2016.
    • Oregon Water Supply & Conservation Initiative (OWSCI): Southern Willamette Valley Municipal Water Providers (SWMWP), Final Report, 64 pp., 2008.
    • Ramírez-Villegas, J., Lau, C., Kohler, A. K., Jarvis, A., Arnell, N., Osborne, T., and Hooker, J.: Climate Analogues: Finding tomorrow's agriculture today, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia, Working Paper No. 12, 42 pp., 2011.
    • Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Book, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
    • Rhodes, D. H. and Ross, A. M.: Anticipatory capacity: Leveraging model-based approaches to design systems for dynamic futures, in: 2nd Annual Conference on Model-based Systems, Haifa, Israel, 46-51, March 2009.
    • Sadovský, Z., Faško, P., Mikulová, K., and Pecho, J.: Exceptional snowfalls and the assessment of accidental snow loads for structural design, Cold Reg. Sci. Technol., 72, 17-22, doi:10.1016/j.coldregions.2011.12.003, 2012.
    • Safeeq, M., Shukla, S., Arismendi, I., Grant, G. E., Lewis, S. L., and Nolin, A.: Influence of winter season climate variability on snow-precipitation ratio in the western United States, Int. J. Climatol., 36, 3175-3190, doi:10.1002/joc.4545, 2016.
    • Salas, J. and Obeysekera, J.: Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events, J. Hydrol. Eng., 19, 554-568, doi:10.1061/(ASCE)HE.1943- 5584.0000820, 2013.
    • Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and Pulwarty, R. S.: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data, Water Resour. Res., 35, 2145-2160, doi:10.1029/1999wr900090, 1999.
    • Service, R. F.: As the West Goes Dry, Science, 303, 1124-1127, doi:10.1126/science.303.5661.1124, 2004.
    • Sproles, E. A.: Climate change impacts on mountain snowpack presented in a knowledge to action framework, PhD thesis, Oregon State University, Corvallis, Oregon, 192 pp., http://hdl.handle. net/1957/28640, 2012.
    • Sproles, E. A.: A spatial-probabilistic assessment of the extraordinarily low snowpacks of 2014 and 2015 in the Oregon Cascades, OSU Libraries, Dataset, doi:10.7267/N9V985ZN, 2017.
    • Sproles, E. A., Nolin, A. W., Rittger, K., and Painter, T. H.: Climate change impacts on maritime mountain snowpack in the Oregon Cascades, Hydrol. Earth Syst. Sci., 17, 2581-2597, doi:10.5194/hess-17-2581-2013, 2013.
    • Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain regions, Hydrol. Process., 23, 78-94, doi:10.1002/hyp.7128, 2009.
    • Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes in Snowmelt Runoff Timing in Western North America under a 'Business as Usual' Climate Change Scenario, Climatic Change, 62, 217-232, doi:10.1023/B:CLIM.0000013702.22656.e8, 2004.
    • Stoelinga, M. T., Albright, M. D., and Mass, C. F.: A New Look at Snowpack Trends in the Cascade Mountains, J. Climate, 23, 2473-2491, doi:10.1175/2009JCLI2911.1, 2010.
    • Sturm, M., Holmgren, J., and Liston, G. E.: A Seasonal Snow Cover Classification-System for Local to Global Applications, J. Climate, 8, 1261-1283, doi:10.1175/1520- 0442(1995)008<1261:assccs>2.0.co;2, 1995.
    • Tague, C. and Grant, G. E.: Groundwater dynamics mediate low-flow response to global warming in snowdominated alpine regions, Water Resour. Res., 45, W07421, doi:10.1029/2008WR007179, 2009.
    • Tennant, C. J., Crosby, B. T., Godsey, S. E., VanKirk, R. W., and Derryberry, D. R.: A simple framework for assessing the sensitivity of mountain watersheds to warming-driven snowpack loss, Geophys. Res. Lett., 42, 2814-2822, 2015.
    • United States Army Corps of Engineers: Comprehensive water supply study: An examination of current water supply issues, edited by: Hillyer, T. M., IWR Report 01-PS-1, 24 pp., 2001.
    • United States Army Corps of Engineers: US Army Corps - Portland District, available at: http://www.nwp.usace.army.mil/Locations/ Willamette-Valley/, last access: 16 July 2016.
    • United States Department of Agriculture: CarmenSmith Hydroelectric Project Area Map, available at: http://www.fs.usda.gov/detailfull/willamette/landmanagement/ resourcemanagement/?cid=stelprdb5043611&width=full, last access: 16 July 2016.
    • United States Geological Survey: USGS Current Conditions for Oregon, available at: http://waterdata.usgs.gov/or/nwis/uv?, last access: 18 August 2015.
    • Wang, A.: Detroit Lake residents, visitors warned of toxic algae bloom, The Oregonian, 15 May 2015.
    • Webb, L. B., Watterson, I., Bhend, J., Whetton, P. H., and Barlow, E. W. R.: Global climate analogues for winegrowing regions in future periods: projections of temperature and precipitation, Aust. J. Grape Wine R., 19, 331-341, 2013.
    • Young, I. T.: Proof without prejudice: use of the KolmogorovSmirnov test for the analysis of histograms from flow systems and other sources, J. Histochem. Cytochem., 25, 935-941, 1977.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research WSC ...
  • NSF | Doctoral Dissertation Resea...

Cite this article