LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Henley, S. F.; Annett, A. L.; Ganeshram, R. S.; Carson, D. S.; Weston, K.; Crosta, X.; Tait, A.; Dougans, J.; Fallick, A. E.; Clarke, A. (2012)
Publisher: Copernicus Publications
Languages: English
Types: Unknown
Subjects: Sediment trap, /dk/atira/pure/subjectarea/asjc/1100/1105, QH540-549.5, QE1-996.5, QH501-531, Geology, Life, Ecology, Organic Chemistry, Sea ice, Carbon concentrating mechanisms, Phytoplankton, /dk/atira/pure/subjectarea/asjc/1900/1910, /dk/atira/pure/subjectarea/asjc/2300/2306, Carbon dioxide, Southern Ocean, Ecology, Evolution, Behavior and Systematics, Antarctica, /dk/atira/pure/subjectarea/asjc/1900/1904, Global and Planetary Change, Diatoms, Oceanography, Biochemistry, Organic matter, /dk/atira/pure/subjectarea/asjc/1300/1303, Carbon isotopes, Earth-Surface Processes, /dk/atira/pure/subjectarea/asjc/1600/1605
A high resolution time-series analysis of stable carbon isotopic signatures in particulate organic carbon (&delta;<sup>13</sup>C<sub>POC</sub>) and associated biogeochemical parameters in sea ice and surface waters provides an insight into the factors affecting &delta;<sup>13</sup>C<sub>POC</sub> in the coastal western Antarctic Peninsula sea ice environment. The study covers two austral summer seasons in Ryder Bay, northern Marguerite Bay between 2004 and 2006. A shift in diatom species composition during the 2005/06 summer bloom to near-complete biomass dominance of <i>Proboscia inermis</i> is strongly correlated with a large ~10 &permil; negative isotopic shift in &delta;<sup>13</sup>C<sub>POC</sub> that cannot be explained by a concurrent change in concentration or isotopic signature of CO<sub>2</sub>. We hypothesise that the &delta;<sup>13</sup>C<sub>POC</sub> shift may be driven by the contrasting biochemical mechanisms and utilisation of carbon-concentrating mechanisms (CCMs) in different diatom species. Specifically, very low &delta;<sup>13</sup>C<sub>POC</sub> in <i>P. inermis</i> may be caused by the lack of a CCM, whilst some diatom species abundant at times of higher &delta;<sup>13</sup>C<sub>POC</sub> may employ CCMs. These short-lived yet pronounced negative &delta;<sup>13</sup>C<sub>POC</sub> excursions drive a 4 &permil; decrease in the seasonal average &delta;<sup>13</sup>C<sub>POC</sub> signal, which is transferred to sediment traps and core-top sediments and consequently has the potential for preservation in the sedimentary record. This 4 &permil; difference between seasons of contrasting sea ice conditions and upper water column stratification matches the full amplitude of glacial-interglacial Southern Ocean &delta;<sup>13</sup>C<sub>POC</sub> variability and, as such, we invoke phytoplankton species changes as a potentially important factor influencing sedimentary &delta;<sup>13</sup>C<sub>POC</sub>. We also find significantly higher &delta;<sup>13</sup>C<sub>POC</sub> in sea ice than surface waters, consistent with autotrophic carbon fixation in a semi-closed environment and possible contributions from post-production degradation, biological utilisation of HCO<sub>3</sub><sup>&minus;</sup> and production of exopolymeric substances. This study demonstrates the importance of surface water diatom speciation effects and isotopically heavy sea ice-derived material for &delta;<sup>13</sup>C<sub>POC</sub> in Antarctic coastal environments and underlying sediments, with consequences for the utility of diatom-based &delta;<sup>13</sup>C<sub>POC</sub> in the sedimentary record.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Almgren, T., Dyrssen, D., and Fonselius, S.: Determination of alkalinity and total carbonate, in: Methods of Seawater Analysis, 2, edited by: Grasshoff, K., Ehrhardt, M., and Kremling, K., Verlag-Chemie, Weinheim, Germany, 99-123, 1983.
    • Altabet, M. A.: Nitrogen isotopic evidence for micronutrient control of fractional NO3− utilization in the equatorial Pacific, Limnol. Oceanogr., 46, 368-380, 2001.
    • Annett, A. L., Carson, D. S., Crosta, X., Clarke, A., and Ganeshram, R. S.: Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica, Polar Biology, 33, 13-29, 2010.
    • Assayag, N., Rive´, K., Ader, M., Je´ze´quel, D., and Agrinier, P.: Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples, Rapid Commun. Mass Spectrom., 20, 2243-2251, 2006.
    • Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408-414, 1987.
    • Barth, J. A., Cowles, T. J., and Pierce, S. D.: Mesoscale physical and bio-optical structure of the Antarctic Polar Front near 170◦ W during austral spring, J. Geophys. Res., 106, 13879- 13902, 2001.
    • Bentaleb, I. and Fontugne, M.: The role of the southern Indian Ocean in the glacial to interglacial atmospheric CO2 change: organic carbon isotope evidences. Global Planet. Change, 16-17, 25-36, 1998.
    • Bentaleb, I., Fontugne, M., Descolas-Gros, C., Girardin, C., Mariotti, A., Pierre, C., Brunet, C., and Poisson, A.: Carbon isotopic fractionation by plankton in the Southern Indian Ocean: relationship between δ13C of particulate organic carbon and dissolved carbon dioxide, J. Mar. Syst., 17, 39-58, 1998.
    • Berner, W., Oeschger, H., and Stauffer, B.: Information on the CO2 cycle from ice core studies, Radiocarbon, 22, 227-235, 1980.
    • Bianchi, C. and Gersonde, R.: Climate evolution at the last deglaciation: The role of the Southern Ocean, Earth Planet. Sci. Lett., 228, 407-424, 2004.
    • Burkhardt, S., Riebesell, U., and Zondervan, I.: Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton, Geochim. Cosmochim. Acta, 63, 3729-3741, 1999.
    • Carson, D. S.: Biogeochemical controls on productivity and particle flux in the coastal Antarctic sea ice environment, Ph.D. thesis, University of Edinburgh, UK, 205 pp., 2008.
    • Cassar, N., Laws, E. A., and Bidigare, R. R.: Bicarbonate uptake by Southern Ocean phytoplankton, Global Biogeochem. Cycles, 18, GB2003, doi:2010.1029/2003GB002116, 2004.
    • Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A., and Thomas, D. N.: Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica, Deep Sea Res. Pt. II, 55, 1988-2006, 2008.
    • Crosta, X. and Shemesh, A.: Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean, Paleoceanography, 17, 1010, doi:10.1029/2000PA000565, 2002.
    • Crosta, X., Sturm, A., Armand, L., and Pichon, J.-J.: Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages, Mar. Micropaleontol., 50, 209-223, doi:10.1016/S0377-8398(03)00072-0, 2004.
    • Crosta, X., Crespin, J., Billy, I., and Ther, O.: Major factors controlling Holocene δ13Corg changes in a seasonal sea-ice environment, Ade´lie Land, East Antarctica, Global Biogeochem. Cycles, 19, GB4029, doi:10.1029/2004GB002426, 2005.
    • Daly, K. L.: Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone, Limnol. Oceanogr., 35, 1564-1576, 1990.
    • Deines, P., Langmuir, D., and Harmon, R. S.: Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters, Geochim. Cosmochim. Acta, 38, 1147-1164, 1974.
    • Descolas-Gros, C. and Fontugne, M. R.: Carbon fixation in marine phytoplankton: carboxylase activities and stable carbonisotope ratios; physiological and palaeoclimatological aspects, Mar. Biol., 87, 1-6, 1985.
    • Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res. Pt. I, 34, 1733-1743, 1987.
    • Eicken, H.: The role of sea ice in structuring Antarctic ecosystems, Polar Biology, 12, 3-13, 1992.
    • Eppley, R. W., Renger, E. H., Venrick, E. L., and Mullin, M. M.: A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean, Limnol. Oceanogr., 18, 534- 551, 1973.
    • Falkowski, P. G.: Species variability in the fractionation of 13C and 12C by marine phytoplankton, J. Plankton Res., 13, 21-28, 1991.
    • Fontugne, M. R., Descolas-Gros, C., and de Billy, G.: The dynamics of CO2 fixation in the Southern Ocean as indicated by carboxylase activities and organic carbon isotopic ratios, Mar. Chem., 35, 371-380, 1991.
    • Franc¸ois, R., Altabet, M. A., Goericke, R., McCorkle, D. C., Brunet, C., and Poisson, A.: Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the S.W. Indian Ocean, Global Biogeochem. Cycles, 7, 627- 644, 1993.
    • Franc¸ois, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon, M. P., Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period, Nature, 389, 929-935, 1997.
    • Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185-198, 1992.
    • Fritsen, C. H., Memmott, J., and Stewart, F. J.: Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica, Deep Sea Res. Part II, 55, 2059-2067, 2008.
    • Ganeshram, R. S., Calvert, S. E., Pedersen, T. F., and Cowie, G. L.: Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation, Geochim. Cosmochim. Acta, 63, 1723- 1734, 1999.
    • Garibotti, I. A., Vernet, M., and Ferrario, M. E.: Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean), Deep Sea Res. Part I, 52, 1823-1841, 2005.
    • Gersonde, R. and Zielinski, U.: Reconstruction of Late Quaternary Antarctic sea-ice distribution - The use of diatoms as a proxy for sea ice, Palaeogeogr., Palaeoclimatol., Palaeoecol., 162, 263- 286, 2000.
    • Gibson, J. A. E., Trull, T., Nichols, P. D., Summons, R. E., and McMinn, A.: Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: A potential indicator of past sea-ice extent, Geology, 27, 331-334, 1999.
    • Gleitz, M. and Thomas, D. N.: Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica, J. Exp. Mar. Biol. Ecol., 173, 211-230, 1993.
    • Gleitz, M., Rutgers v.d. Loeff, M., Thomas, D. N., Dieckmann, G. S., and Millero, F. J.: Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine, Mar. Chem., 51, 81-91, 1995.
    • Goericke, R., Montoya, J. P., and Fry, B.: Physiology of isotopic fractionation in algae and cyanobacteria, in: Stable Isotopes in Ecology and Environmental Science, edited by: Lajtha, K. and Michener, R. H., Blackwell Scientific Publications, Oxford, UK, 187-221, 1994.
    • Gosselin, M., Legendre, L., Therriault, J.-C., and Demers, S.: Light and nutrient limitation of sea-ice microalgae (Hudson Bay, Canadian Arctic), J. Phycol., 26, 220-232, doi:10.1111/j.0022- 3646.1990.00220.x, 1990.
    • Guy, R. D., Vanlerberghe, G. C., and Turpin, D. H.: Significance of phosphoenolpyruvate carboxylase during ammonium assimilation: Carbon isotope discrimination in photosynthesis and respiration by the N-limited green alga Selenastrum minutum, Plant Physiol., 89, 1150-1157, 1989.
    • Hannson, I.: A new set of activity constants for carbonic acid and boric acid in seawater, Deep Sea Res., 20, 461-478, 1973.
    • Hayes, J. M.: Factors controlling 13C contents of sedimentary organic compounds: principles and evidence, Mar. Geol., 113, 111-125, 1993.
    • Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and Santos, U. D.: Compositions and fluxes of particulate matter in the Amazon River, Limnol. Oceanogr., 31, 717-738, 1986.
    • Jacot Des Combes, H., Esper, O., De La Rocha, C.L., Abelmann, A., Gersonde, R., Yam, R., and Shemesh, A.: Diatom δ13C, δ15N and C/N since the Last Glacial Maximum in the Southern Ocean: Potential impact of species composition, Paleoceanography, 23, PA4209, doi:10.1029/2008PA001589, 2008.
    • Jasper, J. P. and Hayes, J. M.: A carbon-isotopic record of CO2 levels during the Late Quaternary, Nature, 347, 462-464, 1990.
    • Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.: Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years, Paleoceanography, 9, 781-798, 1994.
    • Kattner, G., Thomas, D. N., Haas, C., Kennedy, H., and Dieckmann, G. S.: Surface ice and gap layers in Antarctic sea ice: highly productive habitats, Mar. Ecol. Prog. Ser., 277, 1-12, 2004.
    • Kennedy, H., Thomas, D. N., Kattner, G., Haas, C., and Dieckmann, G. S.: Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition, Mar. Ecol. Prog. Ser., 238, 1-13, 2002.
    • Kerby, N. W. and Raven, J. A.: Transport and fixation of inorganic carbon by marine algae, Advances in Botanical Research, 11, 71-123, 1985.
    • Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and Macko, S. A.: Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq : Theoretical considerations and experimental results, Geochim. Cosmochim. Acta, 59, 1131-1138, 1995.
    • Laws, R. A.: Preparing strewn slides for quantitative microscopical analysis: A test using calibrated microspheres, Micropaleontology, 29 , 60-65, 1983.
    • Le Roux-Swarthout, D., Terwilliger, V., Christianson, M., Martin, C., and Mardhavan, S.: Carbon isotope discrimination correlates with a range of ratios of phosphoenolpyruvate to total carboxylase activities found in two C3 species, J. Plant Physiol., 157, 489-493, 2000.
    • Lewis, E. and Wallace, D. W. R.: CO2SYS, version 01.05, Program developed for CO2 system calculations. ORNL/CDIAC105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 1998.
    • Lizotte, M. P. and Sullivan, C. W.: Biochemical composition and photosynthate distribution in sea ice microalgae of McMurdo Sound, Antarctica: evidence for nutrient stress during the spring bloom, Antarct. Sci., 4, 23-30, 1992.
    • Lourey, M. J., Trull, T. W., and Tilbrook, B.: Sensitivity of δ13C of Southern Ocean suspended and sinking organic matter to temperature, nutrient utilization, and atmospheric CO2, Deep Sea Res. Pt. I, 51, 281-305, 2004.
    • Mancuso Nichols, C. A., Guezennec, J., and Bowman, J. P.: Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deepsea hydrothermal vents: A review, Mar. Biotechnol., 7, 253-271, 2005.
    • Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd, S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J.M., Chappellaz, J., Krinner, G., Johnsen, S., Ro¨thlisberger, R., Hansen, J., Mikolajewicz, U., and OttoBliesner, B.: EPICA Dome C record of glacial and interglacial intensities, Quat. Sci. Rev., 29, 113-128, 2010.
    • Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897-907, 1973.
    • Meiners, K., Brinkmeyer, R., Granskog, M. A., and Lindfors, A.: Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea), Aquat. Microb. Ecol., 35, 283-296, 2004.
    • Meredith, M. P., Renfrew, I. A., Clarke, A., King, J. C., and Brandon, M. A.: Impact of the 1997/98 ENSO on upper ocean characteristics in Marguerite Bay, western Antarctic Peninsula, J. Geophys. Res., 109, C09013, doi:10.1029/2003JC001784, 2004.
    • Meredith, M. P., Brandon, M. A., Wallace, M. I., Clarke, A., Leng, M. J., Renfrew, I. A., van Lipzig, N. P. M., and King, J. C.: Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O, Deep Sea Res. Pt. II, 55, 309-322, 2008.
    • Mincks, S. L., Smith, C. R., Jeffreys, R. M., and Sumida, P. Y. G.: Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by δ13C and δ15N analysis, Deep Sea Res. Pt. II, 55, 2502-2514, 2008.
    • Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 169-176, 1974.
    • O'Leary, M. H.: Carbon-isotope fractionation in plants, Phytochemistry, 20, 553-567, 1981.
    • O'Leary, M. H., Madhavan, S., and Paneth, P.: Physical and chemical basis of carbon isotope fractionation in plants, Plant, Cell and Environment, 15, 1099-1104, 1992.
    • O'Leary, T., Trull, T. W., Griffiths, F. B., Tilbrook, B., and Revill, A. T.: Euphotic zone variations in bulk and compound-specific δ13C of suspended organic matter in the subantarctic ocean, south of Australia, J. Geophys. Res. C: Oceans, 106, 31669-31684, doi:10.1029/2000JC000288, 2001.
    • Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G. S., and Thomas, D. N.: Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation, Geochim. Cosmochim. Acta, 68, 1749-1761, 2003.
    • Papadimitriou, S., Thomas, D. N., Kennedy, H., Haas, C., Kuosa, H., Krell, A., and Dieckmann, G. S.: Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer, Limnol. Oceanogr., 52, 1809-1823, 2007.
    • Papadimitriou, S., Thomas, D. N., Kennedy, H., Kuosa, H., and Dieckmann, G. S.: Inorganic carbon removal and isotopic enrichment in Antarctic sea ice gap layers during early austral summer, Mar. Ecol. Prog. Ser., 386, 15-27, doi:10.3354/meps08049, 2009.
    • Perovich, D. K., Elder, B. C., Claffey, K. J., Stammerjohn, S., Smith, R., Ackley, S. F., Krouse, H. R., and Gow, A. J.: Winter sea-ice properties in Marguerite Bay, Antarctica, Deep Sea Res. Pt. II, 51, 2023-2039, 2004.
    • Pollehne, F., Klein, B., and Zeitzschel, B.: Low light adaptation and export production in the deep chlorophyll maximum layer in the northern Indian Ocean, Deep Sea Res. Pt. II, 40, 737-752, 1993.
    • Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and Wakeham, S. G.: Effect of phytoplankton cell geometry on carbon isotopic fractionation, Geochim. Cosmochim. Acta, 62, 69-77, doi:10.1016/S0016-7037(97)00333-5, 1998.
    • Popp, B. N., Trull, T., Kenig, F., Wakeham, S. G., Rust, T. M., Tilbrook, B., Griffiths, F. B., Wright, S. W., Marchant, H. J., Bidigare, R. R., and Laws, E. A.: Controls on the carbon isotopic composition of Southern Ocean phytoplankton, Global Biogeochem. Cycles, 13, 827-844, 1999.
    • Rau, G. H.: Plankton 13C/12C variations in Monterey Bay, California: evidence of non-diffusive inorganic carbon uptake by phytoplankton in an upwelling environment, Deep Sea Res. Pt. I, 48, 79-94, 2001.
    • Rau, G. H., Takahashi, T., and Des Marais, D. J.: Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans, Nature, 341, 516-518, 1989.
    • Rau, G. H., Froelich, P. N., Takahashi, T., and Des Marais, D. J.: Does sedimentary organic δ13C record variations in Quaternary ocean [CO2(aq)]? Paleoceanography, 6, 335-347, 1991.
    • Rau, G. H., Takahashi, T., Des Marais, D. J., Repeta, D. J., and Martin, J. H.: The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model, Geochim. Cosmochim. Acta, 56, 1413-1419, 1992.
    • Rau, G. H., Riebesell, U., and Wolf-Gladrow, D.: A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake, Mar. Ecol. Prog. Ser., 133, 275- 285, 1996.
    • Raven, J. A.: Inorganic carbon acquisition by marine autotrophs, in: Advances in Botanical Research, 27, Callow, J.A., Elsevier, Amsterdam, Netherlands, 85-209, 1997.
    • Raven, J. A. and Johnston, A. M.: Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources, Limnol. Oceanogr., 36, 1701-1714, 1991.
    • Raven, J. A., Johnston, A. M., Ku¨bler, J., and Parsons, R.: The influence of natural and experimental high O2 concentrations on O2-evolving photolithotrophs, Biological Reviews, 69, 61-94, 1994.
    • Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate, Geochim. Cosmochim. Acta, 56, 419-430, 1992.
    • Rosenfeld, J. K.: Nitrogen diagenesis in Long Island Sound sediments, Am. J. Sci., 281, 436-462, 1981.
    • Rosenthal, Y., Dahan, M., and Shemesh, A.: Southern Ocean contributions to glacial-interglacial changes of atmospheric pCO2: An assessment of carbon isotope records in diatoms, Paleoceanography, 15, 65-75, 2000.
    • Schneider-Mor, A., Yam, R., Bianchi, C., Kunz-Pirrung, M., Gersonde, R., and Shemesh, A.: Diatom stable isotopes, sea ice presence and sea surface temperature records of the past 640 ka in the Atlantic sector of the Southern Ocean, Geophys. Res. Lett., 32, L10704, doi:10.1029/2005GL022543, 2005.
    • Schrader, H. J. and Gersonde, R.: Diatoms and silicoflagellates, in: Micropaleontological counting methods and techniques - an exercise on an eight meters section of the lower Pliocene of Capo Rossello, Sicily, edited by: Zachariasse W. J., Utrecht Micropaleontological Bulletins, 17, Utrecht University, Netherlands, 129- 176, 1978.
    • Sharkey, T. D. and Berry, J. A.: Carbon isotope fractionation in algae as influenced by inducible CO2concentrating mechanisms, in: Inorganic carbon uptake by aquatic photosynthetic organisms, edited by: Lucas, W. J. and Berry, J. A., American Society of Plant Physiologists, Rockville, Maryland, USA, 381-401, 1985.
    • Singer, A. J. and Shemesh, A.: Climatically linked carbon-isotope variation during the past 430,000 years in Southern Ocean sediments, Paleoceanography, 10, 171-177, 1995.
    • Sinninghe Damste´, J. S., Rampen, S., Irene, W., Rupstra, C., Abbas, B., Muyzer, G., and Schouten, S.: A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: Indicators for high-nutrient conditions, Geochim. Cosmochim. Acta, 67, 1339- 1348, 2003.
    • Struck, U., Pollehne, F., Bauerfeind, E., and v. Bodungen, B.: Sources of nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper) - results from sediment trap studies, J. Mar. Syst., 45, 91-101, 2004.
    • Thomas, D. N. and Dieckmann, G. S.: Antarctic sea ice - a habitat for extremophiles, Science, 295, 641-644, 2002.
    • Thunell, R. C., Varela, R., Llano, M., Collister, J., Muller-Karger, F., and Bohrer, R.: Organic carbon fluxes, degradation, and accumulation in an anoxic basin: Sediment trap results from the Cariaco Basin, Limnol. Oceanogr., 45, 300-308, 2000.
    • Tortell, P. D., Reinfelder, J. R., and Morel, F. M. M.: Active uptake of bicarbonate by diatoms, Nature, 390, 243-244, 1997.
    • Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon acquisition in coastal Pacific phytoplankton communities, Limnol. Oceanogr., 45, 1485-1500, 2000.
    • Tortell, P. D., Martin, C. L., and Corkum, M. E.: Inorganic carbon uptake and intracellular assimilation by subarctic Pacific phytoplankton assemblages, Limnol. Oceanogr., 51, 2102-2110, 2006.
    • Trull, T. W. and Armand, L.: Insights into Southern Ocean carbon export from the δ13C of particles and dissolved inorganic carbon during the SOIREE iron release experiment, Deep Sea Res. Pt. II, 48, 2655-2680, 2001.
    • Trull, T. W., Davies, D., and Casciotti, K.: Insights into nutrient assimilation and export in naturally iron-fertilized waters of the Southern Ocean from nitrogen, carbon and oxygen isotopes, Deep Sea Res. Pt. II, 55, 820-840, 2008.
    • Villinski, J. C., Dunbar, R. B., and Mucciarone, D. A.: Carbon 13/Carbon 12 ratios of sedimentary organic matter from the Ross Sea, Antarctica: A record of phytoplankton bloom dynamics, J. Geophys. Res. C: Oceans, 105, 14163-14172, doi:10.1029/1999JC000309, 2000.
    • Wakeham, S. G., Peterson, M. L., Hedges, J. I., and Lee, C.: Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean, Deep Sea Res. Pt II, 49, 2265-2301, 2002.
    • Winslow, S. D., Pepich, B. V., Bassett, M. V., Wendelken, S. C., Munch, D.J., and Sinclair, J. L.: Microbial inhibitors for US EPA drinking water methods for the determination of organic compounds, Environ. Sci. Technol., 35, 4103-4110, 2001.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.