LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Alidoost, Fakhereh; Stein, Alfred; Su, Zhongbo; Sharifi, Ali (2017)
Languages: English
Types: Article
Subjects:
Data retrieved from global weather forecast systems are typically biased with respect to measurements at local weather stations. This paper presents three copula-based methods for bias correction of daily air temperature data derived from the European Centre for Medium-range Weather Forecasts (ECMWF). The aim is to predict conditional copula quantiles at different unvisited locations, assuming spatial stationarity of the underlying random field. The three new methods are: bivariate copula quantile mapping (types I and II), and a quantile search. These are compared with commonly applied methods, using data from an agricultural area in the Qazvin Plain in Iran containing five weather stations. Cross-validation is carried out to assess the performance. The study shows that the new methods are able to predict the conditional quantiles at unvisited locations, improve the higher order moments of marginal distributions, and take the spatial variabilities of the bias-corrected variable into account. It further illustrates how a choice of the bias correction method affects the bias-corrected variable and highlights both theoretical and practical issues of the methods. We conclude that the three new methods improve local refinement of weather data, in particular if a low number of observations is available.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from