LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Laurenceau-Cornec, E.C.; Trull, T. W.; Davies, Diana M.; Bray, Stephen G.; Doran, J.; Planchon, F.; Carlotti, F.; Jouander, M.P.; Cavagna, A.-J.; Waite, Anya; Blain, S. (2015)
Publisher: COPERNICUS GESELLSCHAFT MBH
Journal: Biogeosciences Discussions
Types: Article
Subjects: [SDU.STU.OC] Sciences of the Universe [physics]/Earth Sciences/Oceanography, QH540-549.5, QE1-996.5, Evolution, QH501-531, Geology, Life, QH301-705.5, Q, Ecology, Science, [SDV.EE] Life Sciences [q-bio]/Ecology, environment, QH359-425, Biology (General)
The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January–February~2005), suggesting a~limited role of direct export via phytodetrital aggregates. The KEOPS2 project re-investigated this issue during the spring bloom initiation (October–November 2011), when zooplankton communities may exert limited grazing pressure, and explored further the link between carbon flux, export efficiency and dominant sinking particles depending upon surface plankton community structure. Sinking particles were collected in polyacrylamide gel-filled and standard free-drifting sediment traps (PPS3/3), deployed at six stations between 100 and 400 m to examine flux composition, particle origin and their size distributions. Results revealed an important contribution of phytodetrital aggregates (49 ± 10% and 45 ± 22% of the total number and volume of particles respectively, all stations and depths averaged). This high contribution dropped when converted to carbon content (30 ± 16% of total carbon, all stations and depths averaged), cylindrical fecal pellets representing then the dominant fraction (56 ± 19%).

At 100 and 200 m depth, iron and biomass enriched sites exhibited the highest carbon fluxes (maxima of 180 and 84 ± 27 mg C m−2 d−1; based on gel and PPS3/3 trap collection respectively), especially where large fecal pellets dominated over phytodetrital aggregates. Below these depths, carbon fluxes decreased (48 ± 21% decrease in average between 200 and 400 m), and mixed aggregates composed of phytodetritus and fecal matter dominated, suggesting an important role played by physical aggregation in deep carbon export.

Export efficiencies determined from gels, PPS3/3 traps and 234Th disequilibria (200 m carbon flux/net primary productivity), were negatively correlated to net primary productivity with observed decreases from ~ 0.2 at low-iron sites to ~ 0.02 at high-iron sites. Varying phytoplankton communities and grazing pressure appear to explain this negative relationship. Our work emphasizes the need to consider detailed plankton community structure to accurately identify the controls on carbon export efficiency, which appear to include small spatio-temporal variations of ecosystem structure.