LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
R. Paoli; O. Thouron; J. Escobar; J. Picot; D. Cariolle (2014)
Publisher: Copernicus Publications
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Physics::Atmospheric and Oceanic Physics
Large-eddy simulations of stably stratified flows are carried out and analyzed using the mesoscale atmospheric model Méso-NH for applications to kilometer- and subkilometer-scale turbulence in the in the upper troposphere–lower stratosphere. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8 × 109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral, direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the subkilometric range, down to the Ozmidov scales that obey isotropic Kolmogorov turbulence. This study shows the capability of atmospheric models like Méso-NH to represent the turbulence at subkilometer scales.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article