LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Anno, S.; Imaoka, K.; Tadono, T.; Igarashi, T.; Sivaganesh, S.; Kannathasan, S.; Kumaran, V.; Surendran, S. (2014)
Languages: English
Types: Article
Subjects:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately, with limited success, and still require clarification. The present study aimed to investigate the spatial and temporal relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites: TRMM TMI, Aqua AMSR-E, GCOM-W AMSR2, DMSP SSM/I, DMSP SSMIS, NOAA-19 AMSU, MetOp-A AMSU and GEO IR were used to develop an index comprising rainfall. Humidity (total precipitable water, or vertically integrated water vapor amount) and temperature (surface temperature) data were acquired from the JAXA Satellite Monitoring for Environmental Studies (JASMES) portal which were retrieved and processed from the Aqua/MODIS and Terra/MODIS data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling both spatial association analysis and spatial statistical analysis. Our findings show that the combination of ecological factors derived from RS data and socio-economic and demographic factors is suitable for predicting spatial and temporal patterns of dengue outbreaks.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from