LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Esposito, E.; Pece, R.; Porfido, S.; Tranfaglia, G. (2009)
Languages: English
Types: Article
Subjects:
The 23 July 1930 earthquake (MS=6.7) in the Southern Apennines (Italy) was a catastrophic event that produced many effects such as surface faulting, fractures, landslides, settlements, hydrological changes, variations in chemical/physical activity related to the volcanic and/or thermal zones and also acoustic and optical phenomena. It is the first great earthquake of the twentieth century that was studied, thanks to the hydrological monitoring network of the Italian Hydrographic Survey (IHS) set up from 1925 to 1929. For this earthquake we analysed the initial IHS hydrometric and pluviometric data, looking for significant anomalies in springs, water wells and mountain streams. Hydrological data relative to rivers, springs and water wells indicate that some changes can be correlated with the earthquake: a post-seismic excess discharge in some streams, pre- and co-seismic decreases in stream flows and water levels in wells, pre- and post-seismic increases in discharges. The pre- and co-seismic stresses and the tectonic deformations were studied in order to find a possible model of interaction between stress state and hydrological variations. The anomalies found in this work can be considered "rebound anomalies", which are the most common precursor reported by many authors and related to increases in porosity and permeability caused by the fracturing that precedes an earthquake. An estimation of the total excess discharge (0.035 km3) caused by the MS=6.7 Irpinia earthquake is consistent with the excess discharge of about 0.01 km3 determined for the Mw=6.9 Loma Prieta earthquake.

Share - Bookmark

Cite this article

Collected from