Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
G. Pitari; E. Mancini (2002)
Publisher: Copernicus Publications
Journal: Natural Hazards and Earth System Sciences
Languages: English
Types: Article
Subjects: [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, G, GE1-350, Geography. Anthropology. Recreation, QE1-996.5, Environmental technology. Sanitary engineering, Environmental sciences, Geology, TD1-1066
Large explosive volcanic eruptions are capable of injecting considerable amounts of particles and sulphur gases (mostly sulphur dioxide) above the tropopause, causing increases in the stratospheric aerosol optical depth that may be even larger than one order of magnitude. The e-folding particle lifetime in the stratosphere is much longer than in the troposphere (one year versus a few days) so that climatic perturbations in a timeframe of a few years are produced after major volcanic eruptions. A climate-chemistry coupled model is used here to study the dynamical effects of the radiative forcing due to stratospheric aerosols formed after the June, 1991 cataclysmic eruption of Mt. Pinatubo in the Philippines. It is shown that the dynamical perturbation is twofold: (a) the stratospheric mean meridional circulation is affected by local aerosol radiative heating (mostly located in the tropical lower stratosphere); (b) the planetary wave propagation in the mid- to high-latitude lower stratosphere is altered as a consequence of decreasing atmospheric stability due to the climatic perturbation. Dynamical results of the climate model are compared with available observations; a discussion is made regarding the similarities with the dynamical regime of the easterly phase of the equatorial quasi-biennial oscillation. Major findings of this study are: (a) radiatively forced changes in the stratospheric circulation during the first two years after the eruption may, to a large extent, explain the observed trend decline of long-lived greenhouse gases (CH4 and N2O, in particular); (b) the dynamical perturbation helps explain why simple photochemical studies of the ozone trends during 1991–1993 generally fail in reproducing the satellite observed feature consisting of a 2% additional global ozone depletion during 1993 with respect to 1992. In both cases we conclude that an increase in the mid- to high-latitude downward flux at the tropopause is the key factor for explaining the behaviour of these atmospheric tracers during 1991/92.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Angell, J. K. and Korshover, J.: Surface temperature changes following six major volcanic episodes between 1780 and 1980, J. Climate and Appl. Meteorol., 24, 2031-2048, 1985.
    • Bekki, S., Pyle, J. A., Zhong, W., Toumi, R., Haigh, J. D., and Pyle, D. M.: The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption, Geophys. Res .Lett., 23, 2669-2672, 1996.
    • Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and Walter, L. S.: Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophys. Res .Lett., 19, 151-154, 1992.
    • Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere, D. Reidel Ed., 1984.
    • Carey, S. N. and Sigurdsson, H.: Influence of particle aggregation on deposition of distal Tephra from the May 18, 1980, eruption mount St. Helens volcano, J. Geophys. Res., 87, 7061-7072, 1982.
    • Dlugokencky, E. J., Masarie, K. A., Lang, P. M., Tans, P. P., Steele, L. P., and Nisbet, E. G.: A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992, Geophys. Res. Lett., 21, 45-48, 1994.
    • Fahey, D. W. et al.: In-situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion, Nature, 363, 509-514, 1993.
    • Fairlie, T. D. A.: Three-dimensional transport simulations of the dispersal of volcanic aerosol from Mount Pinatubo, Q. J. R. Meteorol. Soc., 121, 1943-1980, 1995.
    • Forster, P. M. and Shine, K. P.: Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res., 102, 10 841-10 855, 1997.
    • Grant, W. B., Browell, E. V., Long, C. S., Stowe, L. L., Grainger, R., and Lambert, A.: Use of volcanic aerosols to study the tropical stratospheric reservoir, J. Geophys. Res., 101, 3973-3988, 1996.
    • Hansen, J. E., Lacis, A., Ruedy, R., and Sato, M.: Potential climate impact of Mount Pinatubo eruption, Geophys. Res. Lett., 19, 215-218, 1992.
    • Hansen, J. E. et al.: Forcings and chaos in interannual to decadal climate change, J. Geophys. Res., 102, 25 679-25 720, 1997.
    • Herzog, M., Graf, H.-F., Textor, C.: The effect of phase changes of water on the development of volcanic plumes, J. Volcanol. Geotherm. Res., 87, 55-74, 1999.
    • Hobbs, P. V., Radket, L. F., Eltgrot, W., and Hegg, D. A.: Airborne studies of the emissions from the volcanic eruptions of Mt. St. Helens, Science, 211, 816-818, 1981.
    • Hofmann, D. J. and Rosen, J. M.: Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chicho´n, Science, 222, 325-327, 1983.
    • Holton, J. R.: On the global exchange of mass between the stratosphere and troposphere, J. Atmos. Sci., 47, 392-395, 1990.
    • Holton, J. R. and Tan, H.-C.: The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200-2208, 1980.
    • IPCC: Climate change 1994: Radiative forcing of climate change, J. T. Houghton et al. Eds., Cambridge University Press, Cambridge, UK, 131-162, 1994.
    • IPCC: Special report on aviation and the global atmosphere, J. E. Penner et al. Eds., Cambridge University Press, Cambridge, UK, 1999.
    • Jones, P. D.: Recent warming in the global temperature series, Geophys. Res. Lett., 21, 1149-1152, 1994.
    • JPL: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL publ. 97-4, 1997.
    • Kinne, S., Toon, O. B., and Prather, M. J.: Buffering of stratospheric circulation by changing amounts of tropical ozone: A Pinatubo case study, Geophys. Res. Lett., 19, 1927-1930, 1992.
    • Kirchner, I., Stenchikov, G. L., Graf, H.-F., Robock, A., and Antuna, J. C.: Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 104, 19 039-19 055, 1999.
    • Kuhlbarsch, T. and Naujokat, B.: Klimabericht zum Juni, August und September und Oktober 1991, Beilage Berliner Wetterkarte, KNH VI/91, VIII/91, IX/91, X/91, 1991.
    • Labitzke, K. and McCormick, M.P.: Stratospheric temperature increases due to Pinatubo aerosols, Geophys. Res. Lett., 19, 207- 210, 1992.
    • Lacis, A., Hansen, J. E., and Sato, M.: Climate forcing by stratospheric aerosols, Geophys. Res. Lett., 19, 1607-1610, 1992.
    • Lamb, H. H.: Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance, Philos. Trans. R. Soc. London, Ser. A, 266, 425-533, 1970.
    • Lambert, A., Grainger, R. G., Remedios, J. J., Rodgers, C. D., Corney, M., and Taylor, F. W.: Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAM, Geophys. Res. Lett., 20, 1287-1290, 1993.
    • Long, C. S. and Stowe, L. L.: Using the NOAA/AVHRR to study stratospheric aerosol optical thickness following the Mt. Pinatubo eruption, Geophys. Res. Lett., 21, 2215-2218, 1994.
    • Mancini, E., Visconti, G., Pitari, G., and Verdecchia, M.: An estimate of the Antarctic ozone modulation by the QBO, Geophys. Res. Lett., 18, 175-178, 1991.
    • McCormick, M. P. and Veiga, R. E.: SAGE II measurements of early Pinatubo aerosols, Geophys. Res. Lett., 19, 155-158, 1992.
    • McCormick, M. P., Thomason, L. W., and Trepte, C. R.: Atmospheric effects of the Mt. Pinatubo eruption, Nature, 373, 399- 404, 1995.
    • McPeters, R. D., Hollandsworth, S. M., Flynn, L. E., Herman, J. R., and Seftor, C. J.: Long-term ozone trends derived from the 16-year combined Nimbus 7/Meteor 3 TOM Version 7 record, Geophys. Res. Lett., 23, 3699-3702, 1996.
    • Mu¨ller, J.-F. and Brasseur, G.: A three-dimensional transport model of the global troposphere, J. Geophys. Res., 100, 16445-16490, 1995.
    • NASA: The atmospheric effects of stratospheric aircraft: A first program report, M. J. Prater et al. Eds., NASA Ref. Publ. 1272, 64-91, 1992.
    • NASA: Models and measurements intercomparison II, J. Park et al. Eds., NASA/TM-1999-209 554x, 1999.
    • Newhall, G. G. and Self, S.: The volcanic explosivity index (VEI): An estimate of explosive magnitude of historic eruptions, J. Geophys. Res., 87, 1231-1238, 1982.
    • Oberbeck, V. R. et al.: Effect of the eruption of El Chicho´n on stratospheric aerosol size and composition, Geophys. Res. Lett., 10, 1021-1024, 1983.
    • Oberhuber, J. M., Herzog, M., Graf, H.-F., and Schwanke, K.: Volcanic plume simulation on large scale, J. Volcanol. Geotherm. Res., 87, 29-53, 1999.
    • Pinto, J. P., Turco, R. P., and Toon, O. B.: Self-limiting physical and chemical effects in volcanic eruption clouds, J. Geophys. Res., 94, 11 165-11 174, 1989.
    • Pitari, G.: A numerical study of the possible perturbation of stratospheric dynamics due to Pinatubo aerosols: Implications for tracer transport, J. Atmos. Sci., 50, 2443-2461, 1993.
    • Pitari, G. and Mancini, E.: Climatic impact of future supersonic aircraft: role of water vapour and ozone feedback on circulation, Phys. Chem. Earth, 26C, 571-576, 2001.
    • Pitari, G. and Rizi, V.: An estimate of the chemical and radiative perturbation of stratospheric ozone following the eruption of Mt. Pinatubo, J. Atmos. Sci., 50, 3260-3276, 1993.
    • Pitari, G., Palermi, S., Visconti, G., and Prinn, R. G.: Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry, J. Geophys. Res., 97, 5953-5962, 1992.
    • Pitari, G., Rizi,V. Ricciardulli,L. and Visconti,G. : High-speed civil transport impact: Role of sulfate, nitric acid trihydrate, and ice aerosol studied with a two-dimensional model including aerosol physics, J. Geophys. Res., 98, 23 141-23 164, 1993.
    • Pitari, G., Grassi, B., and Visconti, G.: Results of a chemicaltransport model with interactive aerosol microphysics, R. D. Bojkov and G. Visconti Eds., XVIII O3 Symp. Proc., 759-762, 1997.
    • Prather, M. J.: Catastrophic loss of stratospheric ozone in dense volcanic clouds, J. Geophys. Res., 97, 10 187-10 191, 1992.
    • Rampino, M. R. and Self, S.: Sulfur rich volcanic eruptions and stratospheric aerosols, Nature, 307, 344-345, 1984.
    • Read, W. G., Froidevaux, L., and Waters, J. W.: Microwave limb sounder measurements of stratospheric SO2 from the Mt. Pinatubo volcano, Geophys. Res. Lett., 20, 1299-1302, 1993.
    • Ricciardulli, L., Pitari, G., and Visconti, G.: Two-dimensional modeling of the time evolution of the Pinatubo aerosol cloud, NATOASI Series, 42, Fiocco et al. Eds., Springer, 71-79, 1996.
    • Robock, A. and Free, M. P.: Ice cores as an index of global volcanism from 1850 to the present, J. Geophys. Res., 100, 11 549- 11 567, 1995.
    • Russel, P. B. et al.: Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses, J. Geophys. Res., 101, 18 745-18 763, 1996.
    • Schauffler, S. M. and Daniel, J. S.: On the effects of stratospheric circulation changes on trace gas trends, J. Geophys. Res., 99, 25 747, 1994.
    • Schoeberl, M. R., Bhartia, P. K., and Hilsenrath, E.: Tropical ozone loss following the eruption of Mt. Pinatubo, Geophys. Res. Lett., 20, 29-32, 1993.
    • Simkin, T. and Siebert, L.: Volcanoes of the World, Second Ed., Geoscience Press, Tucson, Az., pp.349, 1994.
    • Solomon, S., Portmann, R. W., Garcia, R. R., Thomason, L. W., Poole, L. R., and McCormick, M. P.: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713-6727, 1996.
    • Stenchikov, G. L., Kirchner, I., Robock, A., Graf, H.-F., Antuna, J. C., Grainger, R., Lambert, A., and Thomason, L.: Radiative forcing from the 1991 Mt. Pinatubo volcanic eruption, J. Geophys. Res., 103, 13 837-13 858, 1998.
    • Stoiber, R. E., Williams, S. N., and Huebert, B.: Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geotherm. Res., 33, 1-8, 1987.
    • Stowe, L. L., Carey, R. M., and Pellegrino, P. P.: Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data, Geophys. Res. Lett., 19, 159-162, 1992.
    • Swanson, T. H. et al.: Nitrous oxide and halocarbons division, Climate Monitoring and Diagnostic Laboratory No 21, Summary Report, 1992, edited by J. T. Peterson and R. M. Rosson, pp. 59-75, NOAA ERL, Boulder, 1993.
    • Textor, C.: Numerical simulation of scavenging processes in explosive volcanic eruption clouds, Ph. D. Thesis Max-Planck-Institut fu¨r meteorologie, 1999.
    • Thomason, L. W., Poole, L. R., and Deshler, T.: A global climatology of stratospheric aerosol surface area density from Stratospheric Aerosol and Gas Experiment II measurements: 1984- 1994, Geophys. Res., 102, 8967-8976, 1997.
    • Timmreck, C., Graf, H.-F., and Kirchner, I.: A one and half year interactive MA/ECHAM4 simulation of Mt. Pinatubo aerosol, J. Geophys. Res., 104, 9337-9359, 1999.
    • Trepte, C. R. and Hitchman, M. H.: Tropical stratospheric circulation deduced from satellite aerosol data, Nature, 355, 626-628, 1992.
    • Trepte, C. R., Veiga, R. E., and McCormick, M. P.: The poleward dispersal of Mount Pinatubo volcanic aerosol, J. Geophys. Res., 98, 18 563-18 573, 1993.
    • Weisenstein, D. K., Yue, G. K., Ko, M. K. W., Sze, N.-D., Rodriguez, J. M., and Scott, C. J.: A two-dimensional model of sulfur species and aerosols, J. Geophys. Res., 102, 13 019-13 035, 1997.
    • WMO: Scientific assessment of ozone depletion: 1991, Global ozone research and monitoring project, WMO rep. ]25, 1992.
    • WMO: Scientific assessment of ozone depletion: 1998, Global ozone research and monitoring project, WMO rep. ]44, 1999.
    • Young, R. E., Houben, H., and Toon, O. B.: Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption, Geophys. Res. Lett., 21, 369-372, 1994.
  • No related research data.
  • No similar publications.