LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
J. M. Gilbert; R. M. Maxwell (2017)
Publisher: Copernicus Publications
Journal: Hydrology and Earth System Sciences
Languages: English
Types: Article
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066
Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater–surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7–23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model, Water Resour. Res., 50, 2636-2656, doi:10.1002/2013WR014258, 2014.
    • Alexander, B. S., Mendell, G. H., and Davidson, G.: Report of the Board of commissioners on the irrigation of the San Joaquin, Tulare, and Sacramento valleys of the state of California, Washington, D.C., available at: http://hdl.handle.net/2027/miun.agl8832. 0001.001 (last access: 2 May 2016), 1874.
    • Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145-159, 1996.
    • Barnes, M. L., Welty, C., and Miller, A. J.: Global Topographic Slope Enforcement to Ensure Connectivity and Drainage in an Urban Terrain, J. Hydrol. Eng., 21, 6015017, doi:10.1061/(ASCE)HE.1943-5584.0001306, 2016.
    • Bertoldi, G. L., Johnston, R. H., and Evenson, K. D.: Ground water in the Central Valley, California; a summary report, United States Geological Survey, available at: http://pubs.er.usgs.gov/ publication/pp1401A (last access: 12 June 2014), 1991.
    • Bolger, B. L., Park, Y.-J., Unger, A. J. A., and Sudicky, E. A.: Simulating the pre-development hydrologic conditions in the San Joaquin Valley, California, J. Hydrol., 411, 322-330, doi:10.1016/j.jhydrol.2011.10.013, 2011.
    • Brush, C. F., Dogrul, E. C., and Kadir, T.: C2VSim: California Central Valley Groundwater-Surface Water Simulation Model, DWR Technical Memorandum, California Department of Water Resources, Sacramento, CA, available at: http://baydeltaoffice.water.ca.gov/modeling/hydrology/ C2VSim/index_C2VSIM.cfm (last access: 11 February 2014), 2013.
    • Burow, K. R., Shelton, J. L., Hevesi, J. A., and Weissmann, G. S.: Hydrogeologic Characterization of the Modesto Area, San Joaquin Valley, California, US Geological Survey, Reston, VA, available at: http://pubs.usgs.gov/sir/2004/5232/sir_2004-5232. pdf (last access: 3 May 2016), 2004.
    • California Data Exchange Center: California Data Exchange Center, Full Nat. Flow Rep., available at: http://cdec.water.ca.gov/ cgi-progs/rpts_archived1/FNF, last access: 20 July 2015.
    • California Department of Water Resources: California Water Plan Update 2013, Bulletin, California Department of Water Resources, 2014.
    • CDFA - California Department of Food and Agriculture: California Agricultural Statistics Review 2014-2015, California Department of Food and Agriculture, Sacramento, CA, available at: https://www.nass.usda.gov/Statistics_by_State/California/ Publications/California_Ag_Statistics/Reports/2014cas-all.pdf (last access: 29 April 2016), 2015.
    • Chow, V. T.: Open-Channel Hydraulics, The Blackburn Press, Caldwell, NJ, 2009.
    • Climate Prediction Center, N. C. for E. P., National Weather Service, NOAA, US Department of Commerce and Joint Office for Science Support, U. C. for A. R.: NCEP/CPC Four Kilometer Precipitation Set, Gauge and Radar, available at: http: //rda.ucar.edu/datasets/ds507.5/ (last access: 2 November 2015), 2000.
    • Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L.: The Common Land Model, B. Am. Meteorol. Soc., 84, 1013- 1023, doi:10.1175/BAMS-84-8-1013, 2003.
    • Dale, L. L., Dogrul, E. C., Brush, C. F., and Kadir, T. N.: Simulating the Impact of Drought on California's Central Valley Hydrology, Groundwater and Cropping, Br. J. Environ. Clim. Change, 3, 271-291, doi:10.9734/BJECC/2013/2680, 2013.
    • Das, T., Dettinger, M. D., Cayan, D. R., and Hidalgo, H. G.: Potential increase in floods in California's Sierra Nevada under future climate projections, Climatic Change, 109, 71-94, doi:10.1007/s10584-011-0298-z, 2011.
    • Davis, G. H., Green, J. H., Olmsted, F. H., and Brown, D. W.: Ground-water conditions and storage capacity in the San Joaquin Valley, California, Report, available at: http://pubs.er.usgs.gov/ publication/wsp1469 (last access: 6 July 2016), 1959.
    • Davis, G. H., Lofgren, B. E., and Mack, S.: Use of groundwater reservoirs for storage of surface water in the San Joaquin Valley, California, USGS Numbered Series, United States Govt. Print. Off., available at: http://pubs.er.usgs.gov/ publication/wsp1618 (last access: 26 May 2015), 1964.
    • Dettinger, M. D., Cayan, D. R., Meyer, M. K., and Jeton, A. E.: Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900-2099, Climatic Change, 62, 283-317, doi:10.1023/B:CLIM.0000013683.13346.4f, 2004.
    • Ehlschlaeger, C. and Metz, M.: GRASS GIS manual: r.watershed, in: GRASS Development Team, 2014. GRASS GIS 7.0.0svn Reference Manual, Open Source Geospatial Foundation, USA, available at: http://grass.osgeo.org/grass70/manuals/r.watershed. html (last access: 11 February 2015), 2014.
    • Farrar, C. D. and Bertoldi, G. L.: Region 4, Central Valley and Pacific Coast Ranges, in: The Geology of North America, vol. O-2, Hydrogeology, Geological Society of America, Boulder, CO, available at: http://www.clemson.edu/ces/hydro/murdoch/Courses/ AquiferSystems/documents/HeathandBackbooks/Chapter7.pdf (last access: 3 May 2016), 1988.
    • Faunt, C. C. (Ed.): Groundwater Availability of the Central Valley Aquifer, California, United States Geological Survey, available at: http://pubs.usgs.gov/pp/1766/ (last access: 3 May 2016), 2009.
    • Fenneman, N. M. and Johnson, D. W.: Physiographic divisions of the conterminuous U.S., available at: http://water.usgs.gov/ lookup/getspatial?physio (last access: 17 February 2015), 1946.
    • Ficklin, D. L., Luo, Y., Luedeling, E., and Zhang, M.: Climate change sensitivity assessment of a highly agricultural watershed using SWAT, J. Hydrol., 374, 16-29, doi:10.1016/j.jhydrol.2009.05.016, 2009.
    • Ficklin, D. L., Stewart, I. T., and Maurer, E. P.: Projections of 21st Century Sierra Nevada Local Hydrologic Flow Components Using an Ensemble of General Circulation Models, J. Am. Water Resour. Assoc., 48, 1104-1125, doi:10.1111/j.1752- 1688.2012.00675.x, 2012.
    • Flint, L. E., Flint, A. L., Thorne, J. H., and Boynton, R.: Finescale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance, Ecol. Process., 2, 1-21, doi:10.1186/2192-1709-2- 25, 2013.
    • Gesch, D. B.: The National Elevation Dataset, in: Digital Elevation Model Technologies and Applications: The DEM Users Manual, edited by: Maune, D., American Societ for Photogrammetry and Remote Sensing, Bethesda, Maryland, 99-118, 2007.
    • Gesch, D. B., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D.: The National Elevation Dataset, Photogramm. Eng. Remote Sens., 68, 5-11, 2002.
    • Gleeson, T. and Manning, A. H.: Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls, Water Resour. Res., 44, W10403, doi:10.1029/2008WR006848, 2008.
    • Godsey, S. E., Kirchner, J. W., and Tague, C. L.: Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA, Hydrol. Process., 28, 5048- 5064, doi:10.1002/hyp.9943, 2014.
    • Guan, B., Molotch, N. P., Waliser, D. E., Jepsen, S. M., Painter, T. H., and Dozier, J.: Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations: Snow water equivalent in the Sierra Nevada, Water Resour. Res., 49, 5029-5046, doi:10.1002/wrcr.20387, 2013.
    • Gutenberg, B., Buwalda, J. P., and Sharp, R. P.: Seismic Explorations on the Floor of Yosemite Valley, California, Geol. Soc. Am. Bull., 67, 1051-1078, doi:10.1130/0016- 7606(1956)67[1051:SEOTFO]2.0.CO;2, 1956.
    • Hall, W. H.: Physical data and statistics of California, Tables and memoranda relating to rainfall, temperature, winds, evaporation, and other atmospheric phenomena; drainage areas and basins, flows of streams, descriptions and flows of artesian wells, and other factors of water supply; mountain, valley, desert, and swamp-land areas, topography of stream channels, elevations above the sea, and other topographical features, J. J. Ayers, supt. State printing, Sacramento, 1886a.
    • Hall, W. H.: Report of the state engineer of California on irrigation and the irrigation question, edited by: Office of State Engineer, California, State Office, Sacramento, available at: http:// archive.org/details/californiairriga00hallrich (last access: 23 December 2014), 1886b.
    • Hanson, R. T., Schmid, W., Faunt, C. C., and Lockwood, B.: Simulation and Analysis of Conjunctive Use with MODFLOW's Farm Process, Ground Water, 48, 674-689, doi:10.1111/j.1745- 6584.2010.00730.x, 2010.
    • Hanson, R. T., Flint, L. E., Flint, A. L., Dettinger, M. D., Faunt, C. C., Cayan, D., and Schmid, W.: A method for physically based model analysis of conjunctive use in response to potential climate changes, Water Resour. Res., 48, W00L08, doi:10.1029/2011WR010774, 2012.
    • Harding, S. T. and Robertson, R. D.: Irrigation Resources of Central California, in: Report of the Conservation commission of the state of California, State of California, Sacramento, CA, 1912.
    • Jennings, C. W., Strand, R. G., and Rogers, T. H.: Geologic map of California, California Division of Mines and Geology, Sacramento, CA, 1977.
    • Jones, G. H.: San Joaquin River Basin, California State Print. Office, Sacramento, available at: http://archive.org/details/ sanjoaquinriverb29jonerich (last access: 23 December 2014), 1934.
    • Jones, J. E. and Woodward, C. S.: Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems, Adv. Water Resour., 24, 763-774, doi:10.1016/S0309-1708(00)00075-0, 2001.
    • Kirchner, J. W.: A double paradox in catchment hydrology and geochemistry, Hydrol. Process., 17, 871-874, doi:10.1002/hyp.5108, 2003.
    • Kollet, S. J. and Maxwell, R. M.: Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29, 945-958, doi:10.1016/j.advwatres.2005.08.006, 2006.
    • Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model, Water Resour. Res., 44, W02402, doi:10.1029/2007WR006004, 2008.
    • Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453, 2012.
    • Laudon, J. and Belitz, K.: Texture and Depositional History of Late Pleistocene-Holocene Alluvium in the Central Part of the Western San Joaquin Valley, California, Environ. Eng. Geosci., xxviii, 73-88, doi:10.2113/gseegeosci.xxviii.1.73, 1991.
    • Lettenmaier, D. P. and Gan, T. Y.: Hydrologic sensitivities of the Sacramento-San Joaquin River Basin, California, to global warming, Water Resour. Res., 26, 69-86, doi:10.1029/WR026i001p00069, 1990.
    • Lundquist, J. D., Hughes, M., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., and Neiman, P.: High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily Gridded Datasets across the Sierra Nevada, California, J. Hydrometeorol., 16, 1773-1792, doi:10.1175/JHM-D-15-0019.1, 2015.
    • Manning, A. H. and Solomon, D. K.: An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block: Characterizing mountain block recharge, Water Resour. Res., 41, W12412, doi:10.1029/2005WR004178, 2005.
    • Mansoor, K.: Estimation of Subsurface Hydraulic Properties: LLNL Central Valley Hydrologic Model, Lawrence Livermore National Laboratory, Livermore, CA, 2009.
    • Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States, J. Climate, 15, 3237-3251, doi:10.1175/1520- 0442(2002)015<3237:ALTHBD>2.0.CO;2, 2002.
    • Maxwell, R. M.: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling, Adv. Water Resour., 53, 109-117, doi:10.1016/j.advwatres.2012.10.001, 2013.
    • Maxwell, R. M. and Miller, N. L.: Development of a Coupled Land Surface and Groundwater Model, J. Hydrometeorol., 6, 233-247, doi:10.1175/JHM422.1, 2005.
    • McDonnell, J. J.: Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response, Hydrol. Process., 17, 1869-1875, doi:10.1002/hyp.5132, 2003.
    • McGlashan, H. D.: Surface water supply of the San Joaquin River Basin, California, 1895-1927, Report, available at: http://pubs. er.usgs.gov/publication/wsp636D (last access: 21 March 2016), 1930.
    • McGlynn, B. L., McDonnell, J. J., Seibert, J., and Kendall, C.: Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations, Water Resour. Res., 40, W07504, doi:10.1029/2003WR002494, 2004.
    • Mendenhall, W. C., Dole, R. B., and Stabler, H.: Ground water in San Joaquin Valley, California, USGS Numbered Series, Govt. Print. Off., available at: http://pubs.er.usgs.gov/ publication/wsp398 (last access: 28 March 2016), 1916.
    • Miller, C. T., Williams, G. A., Kelley, C. T., and Tocci, M. D.: Robust solution of Richards' equation for nonuniform porous media, Water Resour. Res., 34, 2599-2610, doi:10.1029/98WR01673, 1998.
    • Mo, K. C., Chen, L.-C., Shukla, S., Bohn, T. J., and Lettenmaier, D. P.: Uncertainties in North American Land Data Assimilation Systems over the Contiguous United States, J. Hydrometeorol., 13, 996-1009, doi:10.1175/JHM-D-11-0132.1, 2012.
    • Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519-536, doi:10.1016/j.rse.2007.04.015, 2007.
    • Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781-1800, doi:10.1016/j.rse.2011.02.019, 2011.
    • Mu, Q., Zhao, M., and Running, S.: MODIS Global Evapotranspiration Project (MOD16), available at: http://www.ntsg.umt.edu/ project/mod16, last access: 1 September 2015.
    • Mullen, J. R. and Nady, P.: Water budgets for major streams in the Central Valley, California, 1961-77, Report, available at: http: //pubs.er.usgs.gov/publication/ofr85401 (last access: 9 November 2015), 1985.
    • Nady, P. and Larragueta, L. L.: Estimated average annual streamflow into the Central Valley of California, USGS Numbered Series, available at: http://pubs.er.usgs.gov/publication/ha657 (last access: 3 May 2016), 1983.
    • National Operational Hydrologic Remote Sensing Center: Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Boulder, CO, doi:10.7265/N5TB14TC, 2004.
    • NOAA National Centers for Environmental Information: Climate at a Glance: US Time Series, Precipitation & Temperature, available at: http://www.ncdc.noaa.gov/cag/, last access: 30 November 2016.
    • Null, S. E., Viers, J. H., and Mount, J. F.: Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada, PLoS ONE, 5, e9932, doi:10.1371/journal.pone.0009932, 2010.
    • ORNL DAAC - Oak Ridge National Laboratory Distributed Active Archive Center: Land Cover Type 1 (2001): IGBP global vegetation classification scheme, available at: http://webmap.ornl.gov/ wcsdown/wcsdown.jsp?dg_id=10004_1, last access: 15 November 2014.
    • Page, R. W.: Geology of the fresh ground-water basin of the Central Valley, California, with texture maps and sections, Report, available at: http://pubs.er.usgs.gov/publication/pp1401C (last access: 2 May 2016), 1986.
    • Pan, M.: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent, J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994, 2003.
    • PRISM Climate Group and Oregon State University: PRISM Gridded Climate Data, PRISM Gridded Clim, Data, available at: http://prism.oregonstate.edu (last access: 10 March 2016), 2015.
    • Riegger, J. and Tourian, M. J.: Characterization of runoff-storage relationships by satellite gravimetry and remote sensing, Water Resour. Res., 50, 3444-3466, doi:10.1002/2013WR013847, 2014.
    • Rihani, J. F., Maxwell, R. M., and Chow, F. K.: Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes, Water Resour. Res., 46, W12523, doi:10.1029/2010WR009111, 2010.
    • Riley, F. S. and Galloway, D.: PART I - Mining Ground Water: San Joaquin Valley, California, in: Land Subsidence in the United States, edited by: Galloway, D., Jones, D. R., and Ingebritsen, S. E., United States Geological Survey, available at: http://pubs. usgs.gov/circ/circ1182/ (last access: 11 February 2014), 1999.
    • Soil Survey Staff, Natural Resources Conservation Service: Soil Survey Geographic (SSURGO) Database, available at: http:// sdmdataaccess.nrcs.usda.gov (last access: 10 February 2015), 2009.
    • Spence, C., Guan, X. J., Phillips, R., Hedstrom, N., Granger, R., and Reid, B.: Storage dynamics and streamflow in a catchment with a variable contributing area, Hydrol. Process., 24, 2209-2221, doi:10.1002/hyp.7492, 2010.
    • Sproles, E. A., Leibowitz, S. G., Reager, J. T., Wigington Jr., P. J., Famiglietti, J. S., and Patil, S. D.: GRACE storage-runoff hystereses reveal the dynamics of regional watersheds, Hydrol. Earth Syst. Sci., 19, 3253-3272, doi:10.5194/hess-19-3253- 2015, 2015.
    • Swenson, S.: Grace monthly land water mass grids NETCDF release 5.0, Physical Oceanography Distributed Active Archive Center (PO.DAAC), California, doi:10.5067/TELND-NC005, 2012.
    • Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285, 2006.
    • Thompson, S. E. and Katul, G. G.: Multiple mechanisms generate Lorentzian and 1/f power spectra in daily stream-flow time series, Adv. Water Resour., 37, 94-103, doi:10.1016/j.advwatres.2011.10.010, 2012.
    • van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892-898, doi:10.2136/sssaj1980.03615995004400050002x, 1980.
    • VanRheenen, N. T., Wood, A. W., Palmer, R. N., and Lettenmaier, D. P.: Potential Implications of PCM Climate Change Scenarios for Sacramento-San Joaquin River Basin Hydrology and Water Resources, Climatic Change, 62, 257-281, doi:10.1023/B:CLIM.0000013686.97342.55, 2004.
    • Welch, L. A. and Allen, D. M.: Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow, Hydrogeol. J., 22, 1003-1026, doi:10.1007/s10040-014-1121-5, 2014.
    • Williamson, A. K., Prudic, D. E., and Swain, L. A.: Ground-water flow in the Central Valley, California, Professional Paper, United States Geological Survey, available at: http://pubs.er.usgs.gov/ publication/pp1401D (last access: 10 November 2014), 1989.
    • Wilson, J. L. and Guan, H.: Mountain-Block Hydrology and Mountain-Front Recharge, in: Groundwater Recharge in a Desert Environment: The Southwestern United States, edited by: Hogan, J. F., Phillips, F. M., and Scanlon, B. R., American Geophysical Union, 113-137, available at: http:// onlinelibrary.wiley.com/doi/10.1029/009WSA08/summary (last access: 17 March 2014), 2013.
    • Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res.-Atmos., 117, D03109, doi:10.1029/2011JD016048, 2012.
    • Xia, Y., Cosgrove, B. A., Mitchell, K. E., Peters-Lidard, C. D., Ek, M. B., Brewer, M., Mocko, D., Kumar, S. V., Wei, H., Meng, J., and Luo, L.: Basin-scale assessment of the land surface water budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems, J. Geophys. Res.- Atmos., 121, 2750-2779, doi:10.1002/2015JD023733, 2016.
    • Zhang, Y.-K. and Schilling, K.: Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge, Water Resour. Res., 40, W03504, doi:10.1029/2003WR002094, 2004.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    49
    49%
  • No similar publications.

Share - Bookmark

Cite this article