LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Z. X. Xu; Z. X. Xu; Q. Chu; Q. Chu (2015)
Publisher: Copernicus Publications
Journal: Proceedings of the International Association of Hydrological Sciences
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
In this study, three kinds of hourly precipitation series with the spatial resolution of 0.1° are used to analyze the climatological features and trends of extreme precipitation during the period of 1979–2012 in Beijing, China. The results show that: (1) the spatial distribution of median annual precipitation, with a range from 500 to 825 mm, is similar to that of local topography, which increases from the northwest to the southeast. Taking the urban area as a centre, the inter-annual precipitation in the Beijing area displays an outward decreasing tendency at the maximum rate of 125 mm per decade (125 mm × 10 a−1); (2) extreme precipitation amount, which accounts for 40–48% of total precipitation amount, has a similar spatial distribution to average annual precipitation; (3) the spatial distribution of extreme precipitation days and threshold estimated as the upper 95 percentile are significantly different from that of extreme precipitation, with maximum values concentrated on the urban area and the eastern mountain area, and minimum values in northwest; (4) extreme precipitation days (Ex_pd95) show an opposite distribution to extreme precipitation threshold (Ex_pv95), indicating that areas with greater precipitation threshold may has less precipitation days, and vice versa; (5) an apparent spatiotemporal decreasing tendency is detected in extreme precipitation amount. The downward tendencies are also found in extreme precipitation threshold. Unlike Ex_pv95, in most of the study area, Ex_pd95 is virtually unchanged; (6) downward trends of extreme precipitation is slightly smaller than that of annual precipitation, and the reducing amplitude of north-eastern areas are much higher than the areas in the southwest.
  • No references.
  • No related research data.
  • No similar publications.