Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wilken, Florian; Fiener, Peter; Van Oost, Kristof (2018)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: QE500-639.5, Dynamic and structural geology
ddc: ddc:910
Over the last few decades, soil erosion and carbon redistribution modelling has received a lot of attention due to large uncertainties and conflicting results. For a physically based representation of event dynamics, coupled soil and carbon erosion models have been developed. However, there is a lack of research utilizing models which physically represent preferential erosion and transport of different carbon fractions (i.e. mineral bound carbon, carbon encapsulated by aggregates and particulate organic carbon). Furthermore, most of the models that have a high temporal resolution are applied to relatively short time series (< 10 yr−1), which might not cover the episodic nature of soil erosion. We applied the event-based multi-class sediment transport (MCST) model to a 100-year time series of rainfall observation. The study area was a small agricultural catchment (3 ha) located in the Belgium loess belt about 15 km southwest of Leuven, with a rolling topography of slopes up to 14 %. Our modelling analysis indicates (i) that interrill erosion is a selective process which entrains primary particles, while (ii) rill erosion is non-selective and entrains aggregates, (iii) that particulate organic matter is predominantly encapsulated in aggregates, and (iv) that the export enrichment in carbon is highest during events dominated by interrill erosion and decreases with event size.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baeyens, L.: Verklarende tekst bij het kaartblad Tervuren 102E. Bodemkaart van Belgie, Geologisch-Instituut, Gent, Belgium, 1959.
    • Beuselinck, L., Govers, G., Steegen, A., and Quine, T. A.: Sediment transport by overland flow over an area of net deposition, Hydrol. Process., 13, 2769-2782, doi:10.1002/(SICI)1099- 1085(19991215)13:17< 2769::AID-HYP898> 3.0.CO;2-X, 1999.
    • Beuselinck, L., Hairsine, P. B., Sander, G. C., and Govers, G.: Evaluating a multiclass net deposition equation in overland flow conditions, Water Resour. Res., 38, 14.1-14.11, doi:10.1029/2001WR000250, 2002a.
    • Beuselinck, L., Govers, G., Hairsine, P. B., Sander, G. C., and Breynaert, M.: The influence of rainfall on sediment transport by overland flow over areas of net deposition, J. Hydrol., 257, 145-163, doi:10.1016/S0022-1694(01)00548-0, 2002b.
    • Beuselinck, L., Steegen, A., Govers, G., Nachtergaele, J., Takken, I., and Poesen, J.: Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt, Geomorphology, 32, 69-82, doi:10.1016/S0169- 555X(99)00068-9, 2000c.
    • Billings S. A., Buddemeier R. W., Richter D. deB., Van Oost K., and Bohling G.: A simple method for estimating the influence of eroding soil profiles on atmospheric CO2, Global Biogeochem. Cy., 24, 1-14, doi:10.1029/2009GB003560, 2010.
    • De Roo, A. P. J., Wesseling, C. G., and Ritsema, C. J.: LISEM: a single-event physically based hydrological and soil erosion model for drainage basins, I: theory, input and output, Hydrol. Process., 10, 1107-1117, doi:10.1002/(SICI)1099- 1085(199608)10:8< 1107::AID-HYP415> 3.0.CO, 1996.
    • Desmet, P. J. J. and Govers, G.: Two-dimensional modelling of the within-field variation in rill and gully geometry and location related to topography, Catena, 29, 283-306, doi:10.1016/S0341- 8162(96)00074-4, 1997.
    • Dietrich, W. E.: Settling velocity of natural particles, Water Resour. Res., 18, 1615-1626, doi:10.1029/WR018i006p01615, 1982.
    • Dlugoß, V., Fiener, P., Van Oost, K., and Schneider, K.: Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment, Earth Surf. Proc. Land., 37, 193-208, doi:10.1002/esp.2246, 2012.
    • Doetterl, S., Six, J., Van Wesemael, B., and Van Oost, K.: Carbon cycling in eroding landscapes: Geomorphic controls on soil organic C pool composition and C stabilization, Glob. Change Biol., 18, 2218-2232, doi:10.1111/j.1365-2486.2012.02680.x, 2012.
    • Erol, A., Koskan, Ö., and Basaran, M. A.: Socioeconomic modifications of the universal soil loss equation, Solid Earth, 6, 1025- 1035, doi:10.5194/se-6-1025-2015, 2015.
    • Fiener, P. and Auerswald, K.: Rotation effects of potato, maize, and winter wheat on soil erosion by water, Soil Sci. Soc. Am. J., 71, 1919-1925, doi:10.2136/sssaj2006.0355, 2007.
    • Fiener, P., Govers, G., and Van Oost, K.: Evaluation of a dynamic multi-class sediment transport model in a catchment under soil-conservation agriculture, Earth Surf. Proc. Land., 33, 1639- 1660, doi:10.1002/esp.1634, 2008.
    • Fiener, P., Dlugoß, V., and Van Oost, K.: Erosion-induced carbon redistribution, burial and mineralisation - Is the episodic nature of erosion processes important?, Catena, 133, 282-292, doi:10.1016/j.catena.2015.05.027, 2015.
    • Galdino, S., Sano, E. E., Andrade, R. G., Grego, C. R., Nogueira, S. F., Bragantini, C., and Flosi, A. H. G.: Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated brazilian pastures, Land Degrad. Dev., 27, 773-784, doi:10.1002/ldr.2414, 2016.
    • Gillijns, K., Poesen, J., and Deckers, J.: On the characteristics and origin of closed depressions in loess-derived soils in Europe - A case study from central Belgium, Catena, 60, 43-58, doi:10.1016/j.catena.2004.10.001, 2005.
    • Govers, G.: Selectivity and transport capacity of thin flows in relation to rill erosion, Catena, 12, 35-49, doi:10.1016/S0341- 8162(85)80003-5, 1985.
    • Govers, G.: Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials, Earth Surf. Proc. Land., 17, 515-528, doi:10.1002/esp.3290170510, 1992.
    • Hairsine, P. B. and Rose, C. W.: Modeling water erosion due to overland flow using physical principles 1. sheet flow, Water Resour. Res., 28, 237-243, doi:10.1029/91WR02380, 1992a.
    • Hairsine, P. B. and Rose, C. B.: Modeling water erosion due to overland flow using physical principles 2. rill flow, Water Resour. Res., 28, 245-250, doi:10.1029/91WR02381, 1992b.
    • Hairsine, P. B., Beuselinck, L., and Sander, G. C.: Sediment transport through an area of net deposition, Water Resour. Res., 38, 22.1-22.7, doi:10.1029/2001WR000265, 2002.
    • Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G., and Dabney, S. M.: Dynamic replacement and loss of soil carbon on eroding cropland, Global Biogeochem. Cy., 13, 885-901, doi:10.1029/1999GB900061, 1999.
    • Haynes, R. J.: Labile organic matter fractions as central components of the quality of agricultural soils: An overview, Adv. Agron., 85, 221-268, doi:10.1016/S0065-2113(04)85005-3, 2005.
    • John, B., Yamashita, T., Ludwig, B., and Flessa, H.: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 128, 63-79, doi:10.1016/j.geoderma.2004.12.013, 2005.
    • Kuhn, N. J., Hoffmann, T., Schwanghart, W., and Dotterweich, M.: Agricultural soil erosion and global carbon cycle: controversy over?, Earth Surf. Proc. Land., 34, 1033-1038, doi:10.1002/esp.1796, 2009.
    • Kuhn, N. J., Armstrong, E. K., Ling, A. C., Connolly, K. L., and Heckrath, G.: Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils, Catena, 91, 94-103, doi:10.1016/j.catena.2010.10.002, 2010.
    • Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29, 437-450, doi:10.1016/S0160-4120(02)00192-7, 2003.
    • Ligonja, P. J. and Shrestha, R. P.: Soil erosion assessment in Kondoa eroded area in Tanzania using universal soil loss eguation, geographic information systems and socioeconomic approach, Land Degrad. Dev., 26, 367-379, doi:10.1002/ldr.2215, 2015.
    • Liu, S., Bliss, N., Sundquist, E., and Huntington, T. G.: Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cy., 17, 43.1- 43.24, doi:10.1029/2002GB002010, 2003.
    • Lopez-Vicente, M., Poesen, J., Navas, A., and Gaspar, L.: Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees, Catena, 102, 62-73, doi:10.1016/j.catena.2011.01.001, 2013.
    • Lopez-Vicente, M., Quijano, L., Palazon, L., Gaspar, L., and Navas, A.: Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pre-Pyrenees), Cuadernos De Investigacion Geografica, 41, 127-147, doi:10.18172/cig.2649, 2015.
    • Manies, K. L., Harden, J. W., Kramer, L., and Parton, W. J.: Carbon dynamics within agricultural and native sites in the loess region of Western lowa, Glob. Change Biol., 7, 545-555, doi:10.1046/j.1354-1013.2001.00427.x, 2001.
    • Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C.: A process-based soil erosion model for USDA-Water Erosion Prediction Project technology, T. ASAE, 32, 1587-1593, doi:10.13031/2013.31195, 1989.
    • Parsons, A. J., Abrahams, A. D., and Luk, S.-H.: Hydraulics of interrill overland flow on a semi-arid hillslope, southern Arizona, J. Hydrol., 117, 255-273, doi:10.1016/0022-1694(90)90096-G, 1991.
    • Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N, P and S in grassland soils: a Model, Biogeochemistry, 5, 109-131, doi:10.1007/BF02180320, 1988.
    • Poesen, J.: An improved splash transport model, Z. Geomorphol., 29, 193-211, 1985.
    • Poesen, J. and Savat, J.: Particle-size separation during erosion by splash and runoff, in: Assessment of Erosion, edited by: De Boodt, M. and Gabriels, D., Wiley, 1980.
    • Polyakov, V. O. and Lal, R.: Soil erosion and carbon dynamics under simulated rainfall, Soil Sci., 169, 590-599, doi:10.1097/01.ss.0000138414.84427.40, 2004.
    • Quinton, J. N., Catt, J. A., and Hess, T. M.: The selective removal of phosphorus from soil: is event size important?, J. Environ. Qual., 30, 538-545, doi:10.2134/jeq2001.302538x, 2001.
    • Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3, 311-314, doi:10.1038/ngeo838, 2010.
    • Renwick, W. H., Smith, S. V, Sleezer, R. O., and Buddemeier, R. W.: Comment on “Managing soil carbon” (II), Science, 305, 1567, doi:10.1126/science.1100447, 2004.
    • Römkens, M. J. M., Young, R. A., Poesen, J. W. A., McCool, D. K., El-Swaify, S. A., and Bradford, J. M.: Soil erodibility factor (K), in: Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), edited by: Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C., US Government Printing Office, Washington DC, USA, 65-99, 1997.
    • Rosenbloom, N. A., Doney, S. C., and Schimel, D. S.: Geomorphic evolution of soil texture and organic matter in eroding landscapes, Global Biogeochem. Cy., 15, 365-381, doi:10.1029/1999GB001251, 2001.
    • Schiettecatte, W., Gabriels, D., Cornelis, W. M., and Hofman, G.: Enrichment of organic carbon in sediment transport by interrill and rill erosion processes, Soil Sci. Soc. Am. J., 72, 50-55, doi:10.2136/sssaj2007.0201, 2008a.
    • Schiettecatte, W., Gabriels, D., Cornelis, W. M., and Hofman, G.: Impact of deposition on the enrichment of organic carbon in eroded sediment, Catena, 72, 340-347, doi:10.1016/j.catena.2007.07.001, 2008b.
    • Schmidt, J.: A mathematical model to simulate rainfall erosion. in: Catena Supplement 19: Erosion, transport and deposition processes - Theories and models, edited by: Bork, H.-R., De Ploey, J., and Schick, A. P., Catena, Cremlingen, Germany, 19, 101- 109, 1991.
    • Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cy., 12, 231-257, doi:10.1029/98GB00741, 1998.
    • Steegen, A., Govers, G., Nachtergaele, J., Takken, I., Beuselinck, L., and Poesen, J.: Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium, Geomorphology, 33, 25-36, doi:10.1016/S0169-555X(99)00108-7, 2000.
    • Steegen, A., Govers, G., Takken, I., Nachtergaele, J., Poesen, J., and Merckx, R.: Factors controlling sediment and phosphorus export from two Belgian agricultural catchments, J. Environ. Qual., 30, 1249-1258, doi:10.2134/jeq2001.3041249x, 2001.
    • Van Oost, K., Govers, G., and Desmet, P.: Evaluating the effects of changes in landscape structure on soil erosion by water and tillage, Landscape Ecol., 15, 579-591, doi:10.1023/A:1008198215674, 2000.
    • Van Oost, K., Beuselinck, L., Hairsine, P. B., and Govers, G.: Spatial evaluation of a multi-class sediment transport and deposition model, Earth Surf. Proc. Land., 29, 1027-1044, doi:10.1002/esp.1089, 2004.
    • Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De Gryze, S., and Merckx, R.: Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion, Global Biogeochem. Cy., 19, 1-13, doi:10.1029/2005GB002471, 2005a.
    • Van Oost, K., Govers, G., Cerdan, O., Thauré, D., Van Rompaey, A., Steegen, A., Nachtergaele, J., Takken, I., and Poesen, J.: Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets, Catena, 61, 105- 121, doi:10.1016/j.catena.2005.03.001, 2005b.
    • Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V, Marques da Silva, J. R., and Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle, Science, 318, 626-629, doi:10.1126/science.1145724, 2007.
    • Verstraeten, G., Poesen, J., Demarée, G., and Salles, C.: Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates, J. Geophys. Res., 111, 1-11, doi:10.1029/2006JD007169, 2006.
    • Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., and Marschner, B.: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 39, 2183-2207, doi:10.1016/j.soilbio.2007.03.007, 2007.
    • Wang, Z., Govers, G., Steegen, A., Clymans, W., Van den Putte, A., Langhans, C., Merckx, R., and Van Oost, K.: Catchmentscale carbon redistribution and delivery by water erosion in an intensively cultivated area, Geomorphology, 124, 65-74, doi:10.1016/j.geomorph.2010.08.010, 2010.
    • Wang, Z., Govers, G., Van Oost, K., Clymans, W., Van den Putte, A., and Merckx, R.: Soil organic carbon mobilization by interrill erosion: Insights from size fractions, J. Geophys. Res.-Earth, 118, 348-360, doi:10.1029/2012JF002430, 2013.
    • Wilken, F., Sommer, M., Van Oost, K., Bens, O., and Fiener, P.: Process-oriented modelling to identify main drivers of erosioninduced carbon fluxes, SOIL Discuss., doi:10.5194/soil-2016-71, in review, 2016.
    • Williams, J. R.: The EPIC model, in: Computer models of watershed hydrology, edited by: Singh, V. P., Water Resources Publications, Colorado, USA, 909-1000, 1995.
    • Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses - A guide to conservation planning, US Government Printing Office, Washington DC, USA, 1978.
    • Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model, Global Biogeochem. Cy., 19, 1-17, doi:10.1029/2004GB002271, 2005.
    • Yu, B., Rose, C. W. C., Ciesiolka, A. A., Coughlan, K. J., and Fentie, B.: Toward a framework for runoff and soil loss prediction using GUEST technology, Aust. J. Soil Res., 35, 1191-1212, doi:10.1071/S97002, 1997.
  • No related research data.
  • No similar publications.