LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
B. Delauré; B. Michiels; J. Biesemans; S. Livens; T. Van Achteren (2013)
Publisher: Copernicus Publications
Journal: The International Archives of the Photogrammetry
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Small unmanned aerial vehicles are increasingly being employed for environmental monitoring at local scale, which drives the demand for compact and lightweight spectral imagers. This paper describes the geospectral camera, which is a novel compact imager concept. The camera is built around an innovative detector which has two sensor elements on a single chip and therefore offers the functionality of two cameras within the volume of a single one. The two sensor elements allow the camera to derive both spectral information as well as geometric information (high spatial resolution imagery and a digital surface model) of the scene of interest. A first geospectral camera prototype has been developed. It uses a linear variable optical filter which is installed in front of one of the two sensors of the MEDUSA CMOS imager chip. A accompanying software approach has been developed which exploits the simultaneous information of the two sensors in order to extract an accurate spectral image product. This method has been functionally demonstrated by applying it on image data acquired during an airborne acquisition.
  • No references.
  • No related research data.
  • No similar publications.