Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tangdamrongsub, N.; Steele-Dunne, S.C.; Gunter, B.C.; Ditmar, P.G.; Sutanudjaja, Edwin H.; Sun, Y.; Xia, Ting; Wang, Zhongjing (2017)
Publisher: Copernicus Publications
Journal: Hydrology and Earth System Sciences
Languages: English
Types: Article
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066
An accurate estimation of water resources dynamics is crucial for proper management of both agriculture and the local ecology, particularly in semi-arid regions. Imperfections in model physics, uncertainties in model land parameters and meteorological data, as well as the human impact on land changes often limit the accuracy of hydrological models in estimating water storages. To mitigate this problem, this study investigated the assimilation of Terrestrial Water Storage (TWS) estimates derived from the Gravity Recovery And Climate Experiment (GRACE) data using an Ensemble Kalman Filter (EnKF) approach. The region considered was the Hexi Corridor of Northern China. The hydrological model used for the analysis was PCR-GLOBWB, driven by satellite-based forcing data from April 2002 to December 2010. In this study, EnKF 3D scheme, which accounts for the GRACE spatially-correlated errors, was used. The correlated errors were propagated from the full error variance-covariance matrices provided as a part of the GRACE data product. The impact of the GRACE Data Assimilation (DA) scheme was evaluated in terms of the TWS, as well as individual hydrological storage estimates. The capability of GRACE DA to adjust the storage level was apparent not only for the entire TWS but also for the groundwater component, which had annual amplitude, phase, and long-term trend estimates closer to the GRACE observations. This study also assessed the benefits of taking into account correlations of errors in GRACE-based estimates. The assessment was carried out by comparing the EnKF results, with and without taking into account error correlations, with the in situ groundwater data from 5 well sites and the in situ streamflow data from two river gauges. On average, the experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 %. The inclusion of error correlations provided an equal or greater improvement in the estimates. No significant benefits of GRACE DA were observed in terms of streamflow estimates, which reflect a limited spatial and temporal resolution of GRACE observations. Results from the 9-year long GRACE DA study were used to assess the status of water resources over the Hexi Corridor. Areally-averaged values revealed that TWS, soil moisture, and groundwater storages over the region decreased with an average rate of approximately 0.2, 0.1, and 0.1 cm/yr in terms of equivalent water heights, respectively. A substantial decline in TWS (approximately −0.4 cm/yr) was seen over the Shiyang River Basin in particular, and the reduction mostly occurred in the groundwater layer. An investigation of the relationship between water resources and agriculture suggested that groundwater consumption required to maintain the growing period in this specific basin was likely the cause of the groundwater depletion.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bettadpur, S.: Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields, EGU Meeting, abstract #EGU2012-6409, Vienna, Austria, 2012.
    • Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 62, 241-252, doi:10.1016/S0034-4257(97)00104-1, 1997.
    • Chen, J., Li, J., Zhang, Z., and Ni, S.: Long-term groundwater variations in Northwest India from satellite gravity measurements, Global Planet. Change, 116, 130-138, doi:10.1016/j.gloplacha.2014.02.007, 2014.
    • Cheng, M. and Tapley, B.: Variations in the Earth's oblateness during the past 28 years, J. Geophys. Res., 109, B09402, doi:10.1029/2004JB003028, 2004.
    • Cui, Y. and Shao, J.: The Role of Ground Water in Arid/Semiarid Ecosystems, Northwest China, Groundwater, 43, 471-477, doi:10.1111/j.1745-6584.2005.0063.x, 2005.
    • Dahle, C., Flechtner, F., Gruber, C., König, D., König, R., Michalak, G., and Neumayer, K.-H.: GFZ RL05: An Improved TimeSeries of Monthly GRACE Gravity Field Solutions, in: Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions, edited by: Flechtner, F., Sneeuw, N., and Schuh, W.-D., GEOTECHNOLOGIEN Science Report, 20, Advanced Technologies in Earth Sciences, Berlin, Springer, 29-39, doi:10.1007/978-3-642-32135-1_4, 2014.
    • Dahlgren, S. and Possling, B.: Soil Water Modelling In Arid/Semiarid Regions of Northern China Using Land Information System (LIS): A Minor Field Study in Shiyang River Basin, Dept. of Water Resources Engineering, Lund University, ISRN LUTVDG/TVVR-07/5019, ISSN: 1101-9824, 2007.
    • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haiberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828, 2011.
    • De Lannoy, G. J. M., Reichle, R. H., Houser, P. R., Arsenault, K. R., Verhoest, N. E. C., and Pauwels, R. N.: Satellite-Scale Snow Water Equivalent Assimilation into a HighResolution Land Surface Model, J. Hydrometeor., 11, 352-369, doi:10.1175/2009JHM1192.1, 2009.
    • Döll, P., Schmied, H. M., Schuh, C., Portmann, F. T., and Eicker, A.: Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites, Water Resour. Res., 50, 5698-5720, doi:10.1002/2014WR015595, 2014.
    • Dong, J., Steele-Dunne, S. C., Judge, J., and van de Giesen, N.: A particle batch smoother for soil moisture estimation using soil temperature observations, Adv. Water Resour., 83, 111-122, doi:10.1016/j.advwatres.2015.05.017, 2015.
    • Du, T., Kang, S., Zhang, Z., and Zhang, J.: China's food security is threatened by the unsustainable use of water resources in North and Northwest China, Food and Energy Security, 3, 7-18, doi:10.1002/fes3.40, 2014.
    • Eicker, A., Schumacher, M., Kusche, J., Döll, P., and Müller Schmied, H.: Calibration data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an Ensemble Kalman Filter: First Results, Surv. Geophys., 35, 1285-1309, doi:10.1007/s10712-014- 9309-8, 2014.
    • Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343-367, doi:10.1007/S10236-003-0036-9, 2003.
    • Flechtner, F., Morton, P., Watkins, M., and Webb, F.: Status of the GRACE follow-on mission, in IAG symposium gravity, geoid, and height systems, 141, Venice, Italy, Springer, 117-121, 2014.
    • Forman, B. A., Reichle, R. H., and Rodell, M.: Assimilation of terrestrial water storage from GRACE in a snow-domained basin, Water Resour. Res., 48, W01507, doi:10.1029/2011WR011239, 2012.
    • Geng, G. T. and Wardlaw, R.: Application of Multi-Criterion Decision Making Analysis to Integrated Water Resources Management, Water Resour. Manage., 27, 3191-3207, 2013.
    • Girotto, M., De Lannoy, G. J. M., Reichle, R. H., and Rodell, M.: Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model, Water Resour. Res., 52, 4164-4183, doi:10.1002/2015WR018417, 2016.
    • Gong, D. Y., Shi, P. J., and Wang, J. A.: Daily precipitation changes in the semi-arid region over northern China, J. Arid. Environ., 59, 771-784, doi:10.1016/j.jaridenv.2004.02.006, 2004.
    • Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon. Weather Rev., 129, 2776-2790, 2001.
    • Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B. F.: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations, Water Resour. Res., 48, W07525, doi:10.1029/2011WR011291, 2012.
    • Hu, Z. D.: Study on Study on Evolution Pattern of Water Resources, Ecology and Oasis Migration in the Hexi Corridor, Doctoral Dissertation, Tsinghua University, Beijing, China, 2015.
    • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195-213, doi:10.1016/S0034-4257(02)00096-2, 2002.
    • Huffman, G. J.: Estimates of Root-Mean-Square Random Error for Finite Samples of Estimated Precipitation, J. Appl. Meteor., 36, 1191-1201, 1997.
    • Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolf, D. B.: The TRMM multisatellite precipitation analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeor., 8, 38-55, doi:10.1175/JHM560.1, 2007.
    • Huo, Z., Feng, S., Kang, S., Dai, X., Li, W., and Chen, S.: The Response of Water-Land Environment to Human Activities in Arid Minqin Oasis, Northwest China, Arid Land Res. Manag., 21, 21- 36, 2007.
    • Jekeli, C.: Alternative methods to smooth the Earth's gravity field, Rep., 327, Dept. of Geod. Sci. and Surv., Ohio State Univ., Columbus, 1981.
    • Jiao, J. J., Zhang, X., and Wang, X.: Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China, Nature Sci. Rep., 5, 8960, doi:10.1038/srep08960, 2015.
    • Kang, S., Su, X., Tong, L., Shi, P., Yang, X., Abe, Y., Du, T., Shen, Q., and Zhang, J.: The impacts of human activities on the waterland environment of the Shiyang River basin, an arid region in northwest China, Hydrolog. Sci. J., 49, 413-427, 2014.
    • Klees, R., Liu, X., Wittwe, T., Gunter, B. C., Revtova, E. A., Tenzer, R., Ditmar, P., Winsemius, H. C., and Savenije, H. H. G.: A Comparison of Global and Regional GRACE Models for Land Hydrology, Surv. Geophys., 29, 335-359, doi:10.1007/s10712- 008-9049-8, 2008.
    • Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Ocean. Tech., 15, 809-817, 1998.
    • Li, B., Rodell, M., Zaitchik, B. F., Reichle, R. H., Koster, R. D., and van Dam, T. M.: Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe, J. Hydrol., 446-447, 103-115, doi:10.1016/j.jhydrol.2012.04.035, 2012.
    • Li, F., Zhu, G., and Guo, C.: Shiyang River ecosystem problems and countermeasures, Agr. Sci., 4, 72-78, doi:10.4236/as.2013.42012, 2013.
    • Long, D., Longuevergne, L., and Scanlon, B. R.: Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites, Water Resour. Res., 50, 1131-1151, doi:10.1002/2013WR014581, 2014.
    • Ma, J. Z., Wang, X. S., and Edmunds, W. M.: The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China - a case study of the Shiyang River Basin, J. Arid Environ., 61, 277-295, 2005.
    • Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693-712, 2005.
    • Niu, G.-Y., Seo, K.-W., Yang, Z.-L., Wilson, C., Su, H., Chen, J., and Rodell, M.: Retrieving snow mass from GRACE terrestrial water storage change with a land surface model, Geophys. Res. Lett., 34, L15704, doi:10.1029/2007GL030413, 2007.
    • Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, doi:10.5194/hess-11-1633- 2007, 2007.
    • Reichle, R. H. and Koster, R. D.: Bias reduction in short records of satellite soil moisture, Geophys. Res. Lett., 31, L19501, doi:10.1029/2004GL020938, 2004.
    • Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data assimilation system, B. Am. Meteorol. Soc., 85, 381-394, 2004.
    • Schumacher, M., Kusche, J., and Döll, P.: A Systematic Impact Assessment of GRACE Error Correlation on Data Assimilation in Hydrological Models, J. Geod., 90, 537-559, doi:10.1007/s00190-016-0892-y, 2016.
    • Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088-3111, 2005.
    • Shiklomanov, I. A.: Assessment of water resources and water availability in the world, Comprehensive assessment of the freshwater resources of the world, World Meteorological Organization and the Stockholm Environment Institute, Stockholm, Sweden, 1997.
    • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., and de Haan, C.: Livestocks long shadow: Environmental issues and options, FAO, Rome, Italy, ISBN-13: 978-92-5-105571-7, 2006.
    • Su, H., Yang, Z. L., Dickinson, R. E., Wilson, C. R., and Niu, G. Y.: Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information, J. Geophys. Res., 115, D10104, doi:10.1029/2009JD013035, 2010.
    • Sutanudjaja, E. H., van Beek, L. P. H., de Jong, S. M., van Geer, F. C., and Bierkens, M. F. P.: Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin, Hydrol. Earth Syst. Sci., 15, 2913-2935, doi:10.5194/hess-15- 2913-2011, 2011.
    • Sutanudjaja, E. H., van Beek, L. P. H., de Jong, S. M., van Geer, F. C., and Bierkens, M. F. P.: Calibrating a large-extent highresolution coupled groundwater-land surface model using soil moisture and discharge data, Water Resour. Res., 50, 687-705, doi:10.1002/2013WR013807, 2014.
    • Sutanudjaja, E. H., van Beek, L. P. H., Drost, N., de Graaf, I. E. M., de Jong, K., Peßenteiner, S., Straatsma, M. W., Wada, Y., Wanders, N., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2.0: a 5 arc-minute global hydrological and water resources model, to be submitted to Geosci. Model Dev. Discuss., in preparation, 2017.
    • Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285, 2006.
    • Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410, doi:10.1029/2007JB005338, 2008.
    • Tangdamrongsub, N., Steele-Dunne, S. C., Gunter, B. C., Ditmar, P. G., and Weerts, A. H.: Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin, Hydrol. Earth Syst. Sci., 19, 2079-2100, doi:10.5194/hess-19-2079-2015, 2015.
    • Tangdamrongsub, N., Ditmar, P. G., Steele-Dunne, S. C., Gunter, B. C., and Sutanudjaja, E. H.: Exploring irregular flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with altimetry observation and hydrological models, Remote Sens. Environ., 181, 162-173, doi:10.1016/j.rse.2016.03.030, 2016.
    • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M.: GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503-505, 2004.
    • van Beek, L. P. H.: Forcing PCR-GLOBWB with CRU data, Technical Report, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands, available at: http://vanbeek.geo. uu.nl/suppinfo/vanbeek2008.pdf (last access: 8 October 2014), 2008.
    • van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification, Technical Report, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands, available at: http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009. pdf (last access: 7 October 2014), 2009.
    • van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Global monthly water stress: 1. Water balance and water availability, Water Resour. Res., 47, W07517, doi:10.1029/2010WR009791, 2011.
    • Vermote, E. F., Kotchenova, S. Y., and Ray, J. P.: MODIS surface reflectance user's guide, verion 1.3, available at: http:// modis-sr.ltdri.org/guide/MOD09_UserGuide_v1_3.pdf (last access: 31 July 2015), 2011.
    • Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15-40, doi:10.5194/esd-5-15-2014, 2014.
    • Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, 30205- 30229, 1998.
    • Wahr, J., Swenson, S., and Velicogna, I.: Accuracy of GRACE mass estimates, Geophys. Res. Lett., 33, L06401, doi:10.1029/2005GL025305, 2006.
    • Wanders, N., Bierkens, M. F. P., Jong, S. M., Roo, A., and Karssenberg, D.: The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models, Water Resour. Res., 50, 6874-6891, doi:10.1002/2013WR014639, 2014.
    • Wang, G., Y. Ding, Y., Shen, Y., and Lai, Y.: Environmental degradation in the Hexi Corridor region of China over the last 50 years and comprehensive mitigation and rehabilitation strategies, Environ. Geol., 44, 68-77, 2003.
    • Weerts, A. H. and El Serafy G. Y. H.: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, doi:10.1029/2005WR004093, 2006.
    • Yang, Y. S., Kalin, R. M., Zhang, Y., Lin, X., and Zou, L.: Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment, Hydrolog. Sci. J., 46, 55-72, doi:10.1080/02626660109492800, 2001.
    • Zaitchik, B. F., Rodell, M., and Reichle, E. H.: Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi basin, Amer. Meteor. Soc., J. Hydrometeor., 9, 535-548, doi:10.1175/2007JHM951.1, 2008.
    • Zheng, H., Wang, Z. J., Hu, S. Y., and Malano, H.: Seasonal Water Allocation: Dealing with Hydrologic Variability in the Context of a Water Rights System, J. Water Res. Pl. ASCE, 139, 76-85, 2013.
    • Zhu, J., Winter, C. L., and Wang, Z.: Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional streamaquifer exchanges, Hydrol. Earth Syst. Sci., 19, 4531-4545, doi:10.5194/hess-19-4531-2015, 2015.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article