LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Xu, Rongting; Tian, Hanqin; Lu, Chaoqun; Pan, Shufen; Chen, Jian; Yang, Jia; Zhang, Bowen (2016)
Languages: English
Types: Article
Subjects:
To accurately assess how increased global nitrous oxide (N2O) emission has affected the climate system requires a robust estimation of the pre-industrial N2O emissions since only the difference between current and pre-industrial emissions represents net drivers of anthropogenic climate change. However, large uncertainty exists in previous estimates of pre-industrial N2O emissions from the land biosphere, while pre-industrial N2O emissions at the finer scales such as regional, biome, or sector have not yet well quantified. In this study, we applied a process-based Dynamic Land Ecosystem Model (DLEM) to estimate the magnitude and spatial patterns of pre-industrial N2O fluxes at the biome-, continental-, and global-level as driven by multiple environmental factors. Uncertainties associated with key parameters were also evaluated. Our study indicates that the mean of the pre-industrial N2O emission was approximately 6.20 Tg N yr−1, with an uncertainty range of 4.76 to 8.13 Tg N yr−1. The estimated N2O emission varied significantly at spatial- and biome-levels. South America, Africa, and Southern Asia accounted for 34.12 %, 23.85 %, 18.93 %, respectively, together contributing of 76.90 % of global total emission. The tropics were identified as the major source of N2O released into the atmosphere, accounting for 64.66 % of the total emission. Our multi-scale estimates with a reasonable uncertainty range provides a robust reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere.

Share - Bookmark

Download from

Cite this article

Collected from