Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
P. Katsafados; E. Mavromatidis; A. Papadopoulos; I. Pytharoulis (2011)
Publisher: Copernicus Publications
Journal: Natural Hazards and Earth System Sciences
Languages: English
Types: Article
Subjects: G, GE1-350, Geography. Anthropology. Recreation, QE1-996.5, Environmental technology. Sanitary engineering, Environmental sciences, Geology, TD1-1066
The development and evolution of a deep low-pressure system over the Eastern Mediterranean has been investigated in comparative numerical experiments with a limited area model using climatological, gridded analyses, satellite-derived and high-resolution re-analysis sea surface temperatures (SSTs) as lower boundary conditions. The severe event of 21–22 January 2004 was selected in view of its strength and considerable impact on the coastal communities of the Northern Aegean Sea. The aim of this study is to investigate the sensitivity of storm development and intensity to the different SST sources. High resolution model simulations were performed resolving mesoscale features modulated by the different source of SSTs. Although the atmospheric response was considerable in terms of rain bands and surface fluxes, the general structure of the system was not significantly affected by the different air-sea interaction forcing. The impact on the model performance (and therefore its forecasting skill) was further assessed on the basis of quantitative verification statistics estimated throughout the period of the simulations. The methodology was based on the verification against surface observations from the World Meteorological Organization network, covering Southern Greece and the coastal areas of Western Turkey. The estimated statistical scores revealed small but noticeable deviations among the forecast skills of the simulations.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article