OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W. (2016)
Publisher: Copernicus Publications
Languages: English
Types: 0038
Subjects: Chemistry, QD1-999, Physics, QC1-999

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
The transport and mixing of pollution during the daytime evolution of a valley boundary layer is studied in an idealized way. The goal is to quantify horizontal and vertical tracer mass fluxes between four different valley volumes: the convective boundary layer, the slope wind layer, the stable core, and the atmosphere above the valley. For this purpose, large eddy simulations (LES) are conducted with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle and is homogeneous in the along-valley direction. The surface sensible heat flux is horizontally homogeneous and prescribed by a sine function. The initial sounding is characterized by an atmosphere at rest and a constant Brunt–Väisälä frequency. Various experiments are conducted for different combinations of surface heating amplitudes and initial stability conditions. A passive tracer is released with an arbitrary but constant rate at the valley floor and resulting tracer mass fluxes are evaluated between the aforementioned volumes.

As a result of the surface heating, a convective boundary layer is established in the lower part of the valley with a stable layer on top – the so-called stable core. The height of the slope wind layer, as well as the wind speed within, decreases with height due to the vertically increasing stability. Hence, the mass flux within the slope wind layer decreases with height as well. Due to mass continuity, this along-slope mass flux convergence leads to a partial redirection of the flow from the slope wind layer towards the valley centre and the formation of a horizontal intrusion above the convective boundary layer. This intrusion is associated with a transport of tracer mass from the slope wind layer towards the valley centre. A strong static stability and/or weak forcing lead to large tracer mass fluxes associated with this phenomenon. The total export of tracer mass out of the valley atmosphere increases with decreasing stability and increasing forcing. The effects of initial stability and forcing can be combined to a single parameter, the breakup parameter B. An analytical function is presented that describes the exponential decrease of the percentage of exported tracer mass with increasing B. This study is limited by the idealization of the terrain shape, stratification, and forcing, but quantifies transport processes for a large range of forcing amplitudes and atmospheric stability.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Catalano, F. and Cenedese, A.: High-Resolution Numerical Modeling of Thermally Driven Slope Winds in a Valley with Strong Capping, J. Appl. Meteorol. Clim., 49, 1859-1880, doi:10.1175/2010JAMC2385.1, 2010.
    • Catalano, F. and Moeng, C.-H.: Large-Eddy Simulation of the Daytime Boundary Layer in an Idealized Valley Using the Weather Research and Forecasting Numerical Model, Bound-Lay. Meteorol., 137, 49-75, doi:10.1007/s10546-010-9518-8, 2010.
    • Chazette, P., Couvert, P., Randriamiarisoa, H., Sanak, J., Bonsang, B., Moral, P., Berthier, S., Salanave, S., and Toussaint, F.: Three-dimensional survey of pollution during winter in French Alps valleys, Atmos. Environ., 39, 1035-1047, doi:10.1016/j.atmosenv.2004.10.014, 2005.
    • Chemel, C., Arduini, G., Staquet, C., Largeron, Y., Legain, D., Tzanos, D., and Paci, A.: Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley, Atmos. Environ., 128, 208-215, doi:10.1016/j.atmosenv.2015.12.058, 2016.
    • Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W., and Xue, M.: High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments, J. Appl. Meteorol. Clim., 45, 63-86, doi:10.1175/JAM2322.1, 2006.
    • de Franceschi, M. and Zardi, D.: Study of wintertime high pollution episodes during the Brenner-South ALPNAP measurement campaign, Meteorol. Atmos. Phys., 103, 237-250, doi:10.1007/s00703-008-0327-2, 2009.
    • De Wekker, S. F. J. and Kossmann, M.: Convective Boundary Layer Heights Over Mountainous Terrain - A Review of Concepts, Front. Earth Sci., 3, doi:10.3389/feart.2015.00077, 2015.
    • De Wekker, S. F. J., Steyn, D. G., Fast, J. D., Rotach, M. W., and Zhong, S.: The performance of RAMS in representing the convective boundary layer structure in a very steep valley, Environ. Fluid Mech., 5, 35-62, doi:10.1007/s10652-005-8396-y, 2005.
    • Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound-Lay. Meteorol., 18, 495-527, doi:10.1007/BF00119502, 1980.
    • Emeis, S., Jahn, C., Münkel, C., Münsterer, C., and Schäfer, K.: Multiple atmospheric layering and mixing-layer height in he Inn valley observed by remote sensing, Meteorol. Z., 16, 415-424, doi:10.1127/0941-2948/2007/0203, 2007.
    • Fast, J. D. and Zhong, S.: Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin, J. Geophys. Res.-Atmos., 103, 18927-18946, doi:10.1029/98JD01725, 1998.
    • Gohm, A., Harnisch, F., Vergeiner, J., Obleitner, F., Schnitzhofer, R., Hansel, A., Fix, A., Neininger, B., Emeis, S., and Schäfer, K.: Air Pollution Transport in an Alpine Valley: Results From Airborne and Ground-Based Observations, Bound-Lay Meteorol., 131, 441-463, doi:10.1007/s10546-009-9371-9, 2009.
    • Harnisch, F. and Gohm, A.: Spatial distribution of aerosols in the Inn Valley atmosphere during wintertime, Meteorol. Atmos. Phys., 103, 223-235, doi:10.1007/s00703-008-0318-3, 2009.
    • Henne, S., Furger, M., Nyeki, S., Steinbacher, M., Neininger, B., de Wekker, S. F. J., Dommen, J., Spichtinger, N., Stohl, A., and Prévôt, A. S. H.: Quantification of topographic venting of boundary layer air to the free troposphere, Atmos. Chem. Phys., 4, 497- 509, doi:10.5194/acp-4-497-2004, 2004.
    • Kossman, M., Corsmeier, U., De Wekker, S. F. J., Fiedler, F., Vögtlin, R., Kalthoff, N., Günsten, H., and Neininger, B.: Observations of handover processes between the atmospheric boundary layer and the free troposphere over mountainous terrain, Contr. Atmos. Phys., 72, 329-350, 1999.
    • Lang, M. N., Gohm, A., and Wagner, J. S.: The impact of embedded valleys on daytime pollution transport over a mountain range, Atmos. Chem. Phys., 15, 11981-11998, doi:10.5194/acp15-11981-2015, 2015.
    • Lehner, M. and Gohm, A.: Idealised Simulations of Daytime Pollution Transport in a Steep Valley and its Sensitivity to Thermal Stratification and Surface Albedo, Bound-Lay. Meteorol., 134, 327-351, doi:10.1007/s10546-009-9442-y, 2010.
    • Leukauf, D., Gohm, A., Rotach, M. W., and Wagner, J. S.: The Impact of the Temperature Inversion Breakup on the Exchange of Heat and Mass in an Idealized Valley: Sensitivity to the Radiative Forcing, J. Appl. Meteorol. Clim., 54, 2199-2216, doi:10.1175/JAMC-D-15-0091.1, 2015.
    • Lu, R. and Turco, R. P.: Air Pollutant Transport in a Coastal Environment, Part I: Two-Dimensional Simulations of SeaBreeze and Mountain Effects, J. Atmos. Sci., 51, 2285-2308, doi:10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2, 1994.
    • Lu, R. and Turco, R. P.: Air pollutant transport in a coastal environment-II. Three-dimensional simulations over Los Angeles basin, Atmos. Environ., 29, 1499-1518, doi:10.1016/1352- 2310(95)00015-Q, 1995.
    • Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the ground layer of the atmosphere, Akad. Nauk SSSR Geofiz. Inst. Tr., 151, 163-187, 1954.
    • Princevac, M. and Fernando, H. J. S.: Morning breakup of cold pools in complex terrain, J. Fluid Mech., 616, 99-109, doi:10.1017/S0022112008004199, 2008.
    • Rendón, A. M., Salazar, J. F., Palacio, C. A., and Wirth, V.: Temperature Inversion Breakup with Impacts on Air Quality in Urban Valleys Influenced by Topographic Shading, J. Appl. Meteorol. Clim., 54, 302-321, doi:10.1175/JAMC-D-14-0111.1, 2014.
    • Reuten, C., Steyn, D. G., and Allen, S. E.: Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems, J. Geophys. Res.-Atmos., 112, D11114, doi:10.1029/2006JD008045, 2007.
    • Rotach, M. W. and Zardi, D.: On the boundary-layer structure over highly complex terrain: Key findings from MAP, Q. J. Roy. Meteor. Soc., 133, 937-948, doi:10.1002/qj.71, 2007.
    • Rotach, M. W., Andretta, M., Calanca, P., Weigel, A. P., and Weiss, A.: Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain, Acta Geophys., 56, 194-219, doi:10.2478/s11600-007-0043-1, 2007.
    • Rotach, M. W., Gohm, A., Lang, M. N., Leukauf, D., Stiperski, I., and Wagner, J. S.: On the Vertical Exchange of Heat, Mass, and Momentum Over Complex, Mountainous Terrain, Front. Earth Sci., 3, doi:10.3389/feart.2015.00076, 2015.
    • Schmidli, J.: Daytime Heat Transfer Processes over Mountainous Terrain, J. Atmos. Sci., 70, 4041-4066, doi:10.1175/JAS-D-13- 083.1, 2013.
    • Schmidli, J. and Rotunno, R.: Mechanisms of Along-Valley Winds and Heat Exchange over Mountainous Terrain, J. Atmos. Sci., 67, 3033-3047, doi:10.1175/2010JAS3473.1, 2010.
    • Schnitzhofer, R., Norman, M., Wisthaler, A., Vergeiner, J., Harnisch, F., Gohm, A., Obleitner, F., Fix, A., Neininger, B., and Hansel, A.: A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime, Atmos. Chem. Phys., 9, 3385-3396, doi:10.5194/acp-9- 3385-2009, 2009.
    • Segal, M., Yu, C.-H., Arritt, R., and Pielke, R.: On the impact of valley/ridge thermally induced circulations on regional pollutant transport, Atmos. Environ., 22, 471-486, doi:10.1016/0004- 6981(88)90193-X, 1988.
    • Seibert, P., Beyrich, F., Gryning, S.-E., Joffre, S., Rasmussen, A., and Tercier, P.: Review and intercomparison of operational methods for the determination of the mixing height, Atmos. Environ., 34, 1001-1027, doi:10.1016/S1352-2310(99)00349-0, 2000.
    • Serafin, S. and Zardi, D.: Structure of the Atmospheric Boundary Layer in the Vicinity of a Developing Upslope Flow System: A Numerical Model Study, J. Atmos. Sci., 67, 1171-1185, doi:10.1175/2009JAS3231.1, 2010.
    • Silcox, G. D., Kelly, K. E., Crosman, E. T., Whiteman, C. D., and Allen, B. L.: Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley, Atmos. Environ., 46, 17-24, doi:10.1016/j.atmosenv.2011.10.041, 2012.
    • Sullivan, P. P., Moeng, C.-H., Stevens, B., Lenschow, D. H., and Mayor, S. D.: Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer, J. Atmos. Sci., 55, 3042-3064, doi:10.1175/1520- 0469(1998)055<3042:SOTEZC>2.0.CO;2, 1998.
    • Suppan, P., Schäfer, K., Vergeiner, J., Emeis, S., Obleitner, F., and Griesser, E.: Assessment of air pollution in the vicinity of major alpine routes, in: Highway and Urban Environment, edited by: Kauffman, J. M., Morrison, G. M., and Rauch, S., Springer Netherlands, Dordrecht, the Netherlands, 12, 203-214, doi:10.1007/978-1-4020-6010-6_19, 2007.
    • Vergeiner, D. I. and Dreiseitl, D. E.: Valley winds and slope winds - Observations and elementary thoughts, Meteorol. Atmos. Phys., 36, 264-286, doi:10.1007/BF01045154, 1987.
    • Vergeiner, I.: Eine energetische Theorie der Hangwinde, 17. Int. Tag. Alpine Meteorol., 189-191, 1982.
    • Wagner, J. S., Gohm, A., and Rotach, M. W.: The Impact of Horizontal Model Grid Resolution on the Boundary Layer Structure over an Idealized Valley, Mon. Weather Rev., 142, 3446-3465, doi:10.1175/MWR-D-14-00002.1, 2014.
    • Wagner, J. S., Gohm, A., and Rotach, M. W.: The impact of valley geometry on daytime thermally driven flows and vertical transport processes, Q. J. Roy. Meteor. Soc., 141, 1780-1794, doi:10.1002/qj.2481, 2015a.
    • Wagner, J. S., Gohm, A., and Rotach, M. W.: Influence of alongvalley terrain heterogeneity on exchange processes over idealized valleys, Atmos. Chem. Phys., 15, 6589-6603, doi:10.5194/acp15-6589-2015, 2015b.
    • Weigel, A. P., Chow, F. K., and Rotach, M. W.: The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere, Bound.-Lay. Meteorol., 125, 227-244, doi:10.1007/s10546-006-9120-2, 2007.
    • Whiteman, C. D. and McKee, T. B.: Breakup of Temperature Inversions in Deep Mountain Valleys: Part II, Thermodynamic Model, J. Appl. Meteorol., 21, 290-302, doi:10.1175/1520- 0450(1982)021<0290:BOTIID>2.0.CO;2, 1982.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok