Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Quinn , J. M.; Paschmann , G.; Sckopke , N.; Jordanova , V. K.; Vaith , H.; Bauer , O. H.; Baumjohann , W.; Fillius , W.; Haerendel , G.; Kerr , S. S.; Kletzing , C. A.; Lynch , K.; Mcilwain , C. E.; Torbert , R. B.; Whipple , E. C. (1999)
Publisher: European Geosciences Union
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Physics::Space Physics
We present the first triangulation measurements of electric fields with the electron drift instrument (EDI) on Equator-S. We show results from five high-data-rate passes of the satellite through the near-midnight equatorial region, at geocentric distances of approximately 5–6 RE, during geomagnetically quiet conditions. In a co-rotating frame of reference, the measured electric fields have magnitudes of a few tenths of mV/m, with the E × B drift generally directed sunward but with large variations. Temporal variations of the electric field on time scales of several seconds to minutes are large compared to the average magnitude. Comparisons of the "DC" baseline of the EDI-measured electric fields with the mapped Weimer ionospheric model and the Rowland and Wygant CRRES measurements yield reasonable agreement.

Key words. Magnetospheric physics (electric fields; plasma convection; instruments and techniques)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baumjohann, W., and G. Haerendel, Magnetospheric convection observed between 0600 and 2100 LT: solar wind and IMF dependence, J. Geophys. Res., 90, 6370, 1985.
    • Baumjohann, W., G. Haerendel, and F. Melzner, Magnetospheric convection observed between 0600 and 2100 LT: variations with Kp, J. Geophys. Res., 90, 393, 1985.
    • Mauk, B. H., Quantitative modeling of the ``convection surge'' mechanism of ion acceleration, J. Geophys. Res., 91, 13 423, 1986.
    • Maynard, N. C., T. L. Aggson, and J. P. Heppner, The plasmaspheric electric ®eld as measured by ISEE I. J. Geophys. Res., 88, 3991, 1983.
    • McIlwain, C. E., Plasma convection in the vicinity of the geosynchronous orbit, in Earth's Magnetospheric Process, Ed, B. M. McCormac 268, 1972.
    • Melzner, F., G. Melzner, and D. Antrack, The Geos electron beam experiment, S 329, Space Sci Instru., 4, 45, 1978.
    • Paschmann, G., F. Melzner, R. Frenzel, H. Vaith, P. Parrigger, U. Pagel, O. H. Bauer, G. Haerendel, W. Baumjohann, N. Sckopke, R. B. Torbert, B. Briggs, J. Chan, K. Lynch, K. Morey, J. M. Quinn, D. Simpson, C. Young, C. E. McIlwain, W. Fillius, S. S. Kerr, R. Maheu, and E. C. Whipple, The electron drift instrument for Cluster, Space Sci. Rev., 79, 233, 1997.
    • Paschmann, G., C. E. McIlwain, J. M. Quinn, R. B. Torbert, and E. C. Whipple, The electron drift technique for measuring electric and magnetic ®elds, in Measurement Techniques in Space Plasmas: Fields. Geophysical Monograph 103, Am. Geophys. Union, 1998.
    • Paschmann, G., N. Sckopke, H. Vaith, J. M. Quinn, O. H. Bauer, W. Baumjohann, W. Fillius, G. Haerendel, S. S. Kerr, C. A. Kletzing, K. Lynch, C. E. McIlwain, R. B. Torbert, and E. C. Whipple, EDI electron gyro time measurements on Equator-S, Ann. Geophysicae, this issue, 1999.
    • Rowland, D. E., and J. R. Wygant, Dependence of the large-scale, inner magnetospheric electron ®eld on geomagnetic activity, J. Geophys. Res., 103, 14 959, 1998.
    • Quinn, J. M., and D. J. Southwood, Observations of parallel ion energization in the equatorial region, J. Geophys. Res., 87, 10 536, 1982.
    • Tsyganenko, N. A., E€ects of the solar wind conditions on the global magnetospheric con®gurations as deduced from databased ®eld models, Proc. Third International Conference on Substorms (ICS-3), Eur. Space Agency Spec. Publ., SP-389, 181, 1996.
    • Vaith, H., R. Frenzel, G. Paschmann, and F. Melzner, Electron gyro time measurement technique for determining electric and magnetic ®elds, in Measurement Techniques in Space Plasmas: Fields, Eds. Pfa€, Borovsky, and Young Geophysical Monograph 103, 47, American Geophysical Union, 1998.
    • Weimer, D. R., Models of high-latitude electric potentials derived with a least error ®t of spherical harmonic coecients, J. Geophys. Res., 100, 19 595, 1995.
    • Weimer, D. R., A ¯exible, IMF dependent model of high-latitude electric potentials having ``space weather'' applications, Geophys. Res. Lett., 23, 2549, 1996.
  • No related research data.
  • No similar publications.