LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
F. Monnier; B. Vallet; B. Soheilian (2012)
Publisher: Copernicus Publications
Journal: ISPRS Annals of the Photogrammetry
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
3D reconstruction of trees is of great interest in large-scale 3D city modelling. Laser scanners provide geometrically accurate 3D point clouds that are very useful for object recognition in complex urban scenes. Trees often cause important occlusions on building façades. Their recognition can lead to occlusion maps that are useful for many façade oriented applications such as visual based localisation and automatic image tagging. This paper proposes a pipeline to detect trees in point clouds acquired in dense urban areas with only laser informations (x,y, z coordinates and intensity). It is based on local geometric descriptors computed on each laser point using a determined neighbourhood. These descriptors describe the local shape of objects around every 3D laser point. A projection of these values on a 2D horizontal accumulation space followed by a combination of morphological filters provides individual tree clusters. The pipeline is evaluated and the results are presented on a set of one million laser points using a man made ground truth.
  • No references.
  • No related research data.
  • No similar publications.