LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rayner, R. J (2004)
Languages: English
Types: Article
Subjects:
We use a genetic algorithm to construct optimal observing networks of atmospheric concentration for inverse determination of net sources. Optimal networks are those that produce a minimum in average posterior uncertainty plus a term representing the divergence among source estimates for different transport models. The addition of this last term modifies the choice of observing sites, leading to larger networks than would be chosen under the traditional estimated variance metric. Model-model differences behave like sub-grid heterogeneity and optimal networks try to average over some of this. The optimization does not, however, necessarily reject apparently difficult sites to model. Although the results are so conditioned on the experimental set-up that the specific networks chosen are unlikely to be the best choices in the real world, the counter-intuitive behaviour of the optimization suggests the model error contribution should be taken into account when designing observing networks. Finally we compare the flux and total uncertainty estimates from the optimal network with those from the 3 control case. The  3 control case performs well under the chosen uncertainty metric and the flux estimates are close to those from the optimal case. Thus the 3 findings would have been similar if minimizing the total uncertainty guided their network choice.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bousquet, P., Peylin, P., Ciais, P., Que´re´, C. L., Friedlingstein, P., and Tans, P. P.: Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 1342-1346, 2000.
    • Denning, A. S., Holzer, M., Gurney, K. R., Heimann, M., Law, R. M., Rayner, P. J., Fung, I. Y., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M., and Levin, I.: Three-dimensional transport and concentration of SF6: A model intercomparison study (TransCom 2), Tellus, 51B, 266- 297, 1999.
    • GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project - Carbon Dioxide, CD-ROM, NOAA CMDL, Boulder, Colorado, (also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, path: ccg/co2/GLOBALVIEW), 2001.
    • Gloor, M., Fan, S. M., Pacala, S., and Sarmiento, J.: Optimal sampling of the atmosphere for purpose of inverse modeling: A model study, Global Biogeochem. Cycles, 14, 407-428, 2000.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626-630, 2002.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Kowalczyk, E., Maki, T., Maksyutov, S., Peylin, P., Prather, M., Pak, B. C., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information, Tellus, 55B, 555-579, doi:10.1034/j.1600- 0560.2003.00049.x, 2003.
    • Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Fung, I. Y., Heimann, M., Piper, S. C., Ramonet, M., Taguchi, S., Taylor, J. A., Trudinger, C. M., and Watterson, I. G.: Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions, Global Biogeochem. Cycles, 10, 783-796, 1996.
    • Law, R. M., Chen, Y.-H., Gurney, K. R., and TransCom 3 modellers: TransCom 3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices, Tellus, 55B, 580-595, doi:10.1034/j.1600-0560.2003.00053.x, 2003.
    • Patra, P. K. and Maksyutov, S.: Incremental approach to the optimal network design for CO2 surface source inversion, Geophys. Res. Lett., 29, 1459, doi:10.1029/2001GL013943, 2002.
    • Patra, P. K., Maksyutov, S., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Denning, A. S., Fan, S., Fung, I. Y., Gloor, M., Gurney, K. R., Heimann, M., Higuchi, K., John, J., Law, R. M., Maki, T., Peylin, P., Prather, M., Pak, B., Rayner, P. J., Sarmiento, J. L., Taguchi, S., Takahashi, T., and Yuen, C.-W.: Sensitivity of optimal extension of CO2 observation networks to model transport, Tellus B, 55, 498-511, 2003.
    • Rayner, P. J., Enting, I. G., and Trudinger, C. M.: Optimizing the CO2 observing network for constraining sources and sinks, Tellus, 48B, 433-444, 1996.
    • Rayner, P. J., Enting, I. G., Francey, R. J., and Langenfelds, R. L.: Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations, Tellus, 51B, 213-232, 1999.
    • Ro¨denbeck, C., Houweling, S., Gloor, M., and Heimann, M.: Timedependent atmospheric CO2 inversions based on interannually varying tracer transport, Tellus B, 55, 488-497, 2003.
    • Roy, T., Rayner, P., Matear, R., and Francey, R.: Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates, Tellus, 55B, 701-710, doi:10.1034/j.1600- 0560.2003.00058.x, 2003.
    • Tans, P. P., Fung, I. Y., and Takahashi, T.,: Observational constraints on the global atmospheric CO2 budget, Science, 247, 1431-1438, 1990.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from