Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Krishna, G.; Sahoo, R. N.; Pargal, S.; Gupta, V. K.; Sinha, P.; Bhagat, S.; Saharan, M.S.; Singh, R.; Chattopadhyay, C. (2014)
Languages: English
Types: Article
The potential of hyperspectral reflectance data was explored to assess severity of yellow rust disease (Biotroph Pucciniastriiformis) of winter wheat in the present study. The hyperspectral remote sensing data was collected for winter wheat (Triticum aestivum L.) cropat different levels of disease infestation using field spectroradiometer over the spectral range of 350 to 2500 nm. The partial least squares (PLS) and multiple linear (MLR) regression techniques were used to identify suitable bands and develop spectral models for assessing severity of yellow rust disease in winter wheat crop. The PLS model based on the full spectral range and n = 36, yielded a coefficient of determination (R2) of 0.96, a standard error of cross validation (SECV) of 12.74 and a root mean square error of cross validation (RMSECV) of 12.41. The validation analysis of this PLS model yielded r2 as 0.93 with a SEP (Standard Error of Prediction) of 7.80 and a RMSEP (Root Mean Square Error of prediction) of 7.46. The loading weights of latent variables from PLS model were used to identify sensitive wavelengths. To assess their suitability multiple linear regression (MLR) model was applied on these wavelengths which resulted in a MLR model with three identified wavelength bands (428 nm, 672 nm and 1399 nm). MLR model yielded acceptable results in the form of r2 as 0.89 for calibration and 0.90 for validation with SEP of 3.90 and RMSEP of 3.70. The result showed that the developed model had a great potential for precise delineation and detection of yellow rust disease in winter wheat crop.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from