Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
A. Staalstrøm; E. Aas; B. Liljebladh (2012)
Publisher: Copernicus Publications
Journal: Ocean Science (OS)
Languages: English
Types: Article
Subjects: G, GE1-350, Geography. Anthropology. Recreation, Environmental sciences
Observations of velocity, pressure, temperature and salinity in the inner Oslofjord have been analysed to provide new information about the relationships between internal tides generated by tidal currents across the Drøbak Sill and dissipation and diffusivity in the fjord. <br><br> The most energetic vertical displacement of density surfaces inside the sill is associated with the first internal mode that has maximum amplitude around sill depth. The amplitude of the vertical displacement around sill depth correlates with the amplitude of the surface elevation, and, at a distance of 1 km inside the sill, the ratio between the amplitudes is 38, decreasing to 11 at a distance of 10 km. The greatest vertical displacements inside the sill, however, are found at 40 m depth. These latter internal waves are not associated with a first-mode internal tide, but are rather associated with higher internal modes controlled by stratification. <br><br> The energy flux of the internal wave propagating from the Drøbak Sill into the inner fjord on the east side of the Håøya Island is estimated to vary in the range 155–430 kW. This is the same order of magnitude as the estimated barotropic energy loss over the Drøbak Sill (250 kW), but only 4–10% of the total barotropic flux. Approximately 40–70% of the internal energy flux is lost within a distance of 10 km from the sill. The mean diffusivity below 90 m depth in this area (~20 cm<sup>2</sup> s<sup>−1</sup>) is more than four times higher than in the rest of the fjord (~5 cm<sup>2</sup> s<sup>−1</sup> or less).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aas, E. and Endresen, Ø.: Accuracy of simplified transport estimations in narrow sea straits, Ocean Dynam., 51, 441-451, 1999.
    • Afanasyev, Y. D. and Peltier, W. R.: On breaking internal waves over the sill in Knight Inlet, Proc. Roy. Soc. Lnd. A, 457, 2700-2825, 2001.
    • Armi, L. and Farmer, D.: Stratified flow over topography: bifurcation fronts and transition to the uncontrolled state, Proc. Roy. Soc. Lnd. A, 458, 513-538, 2002.
    • Arneborg, L., Janzen, C., Liljebladh, B., Rippeth, T. P., Simpson, J. and Stigebrandt, A.: Spatial variability of diapycnal mixing and turbulent dissipation rates in a stagnant fjord basin, J. Phys. Oceanogr., 34, 1679-1691, 2004.
    • Arneborg, L. and Liljebladh, B.: The internal Seiches in Gullmar Fjord. Part I: Dynamics, J. Phys. Oceanogr., 31, 2549-2566, 2001a.
    • Arneborg, L. and Liljebladh, B.: The internal Seiches in Gullmar Fjord. Part II: Contribution to basin water mixing, J. Phys. Oceanogr. , 31, 2567-2574, 2001b.
    • Arneborg, L. and Liljebladh, B.: Overturning and dissipation caused by baroclinic tidal flow near the sill of a fjord basin, J. Phys. Oceanogr., 39, 2156-2174, 2009.
    • Cottier, F., Inall, M., and Griffiths, C.: Seasonal variations in internal wave energy in a Scottish sea loch, Ocean Dynam. 54, 340- 347, 2004.
    • Farmer, D. and Armi, L.: Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment, Proc. Roy. Soc. Lnd. A, 455, 3221-3258, 1999.
    • Farmer, D. M. and Freeland, H. J.: The physical oceanography of fjords, in: Progress in Oceanography, Vol. 12, edited by: Angel, M. V. and O'Brien, J. J., Pergamon Press, Oxford, 147-219, 1983.
    • Farmer, D. M. and Smith, J. D.: Nonlinear internal waves in a fjord, in: Hydrodynamics of Estuaries and Fjords, edited by: Nihoul, J., Elsevier, 465-493, 1978.
    • Farmer, D. M. and Smith, J. D.: Generation of lee waves over the sill in Knight Inlet, in: Fjord Oceanography, edited by: Freeland, H. J., Farmer, D. M., and Levings, C. D., Plenum Press, 259-269, 1979.
    • Farmer, D. M. and Smith, J. D.: Tidal interaction of stratified flow with a sill in Knight Inlet, Deep-Sea Res., 27A, 239-254, 1980.
    • Fjeldstad, J. E.: Internal waves of tidal origin, Geofys. Publ., 25, 73 pp., 1964.
    • Freeland, H. J., Farmer, D. M. and Levings, C. D. (eds.): Fjord Oceanography, NATO Conference Series, Vol. IV:4, Plenum Press, New York, USA, 715 pp., 1980.
    • Gade, H. G: The Oslofjord and its pollution problems, Investigations 1962-1965, Report no. 2, Hydrography (in Norwegian), NIVA report OR-0191c, 163 pp., 1967.
    • Gade, H. G.: Hydrographic investigations in the Oslofjord, a study of water circulation and exchange processes, Geophys. Inst. Div. A, Rep 24, 1970.
    • Gade, H. and Edwards, A.: Topographic influence on determination of one-dimensional vertical diffusivity in sea basins, Geophys. Inst., Univ. Bergen, Rep. No. 73, 20 pp., 1995.
    • Gade, H. G., Edwards, A., and Svendsen, H.: Coastal Oceanography, NATO Conference Series, Vol. IV, Plenum Press, New York, USA, 582 pp., 1983.
    • Gargett, A. E.: Turbulence measurements through a train of breaking internal waves in Knight Inlet, BC, in: Fjord Oceanography, edited by: Freeland, H. J., Farmer, D. M., and Levings, C. D., Plenum Press, 277-281, 1979.
    • Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, San Diego, CA, USA, 662 pp., 1982.
    • Gill, A. E. and Clarke, A. J.: Wind-induced upwelling, coastal currents and sea-level changes, Deep-Sea Research, 21, 325-345, 1974.
    • Inall, M. E.: Internal wave induced dispersion and mixing on a sloping boundary, Geophys. Res. Let., 36, L05604, doi:10.1029/2008GL036849, 2009.
    • Inall, M. E. and Rippeth, T. P.: Dissipation of tidal energy and associated mixing in a wide fjord, Environm. Fluid Mech., 2, 219- 240, 2002.
    • Inall, M., Cottier, F. Griffiths, C., and Rippeth, T.: Sill dynamics and energy transformation in a jet fjord, Ocean Dynam., 54, 307-314, doi:10.1007/s10236-003-0059-2, 2004.
    • Inall, M. E. and Gillibrand, P. A.: The physics of mid-latitude fjords: a review, Geological Society, London, UK, Special Publications 344, 17-34, 2010.
    • Johnsson, M., Green, J. A., and Stigebrandt, A.: Baroclinic wave drag from two closely spaced sills in a narrow fjord as inferred from basin water mixing, J. Geophys. Res., 112, C11002, doi:10.1029/2006JC003694, 2007.
    • Kaartvedt, S., Røstad, A., and Klevjer, T. A.: Sprat Sprattus sprattus can exploit low oxygen waters for overwintering, Mar. Ecol. Prog. Ser., 390, 237-249, doi:10.3354/meps08196, 2009.
    • Klymak, J. M. and Gregg, M. C.: Tidally generated turbulence over the Knight Inlet Sill, J. Phys. Oceanogr., 34, 1135-1151, 2004.
    • Kullenberg, G.: Measurements of horizontal and vertical diffusion in coastal waters, Dept. Phys. Oceanogr., Univ. Copenhagen, Rep. No. 3, 66 pp., 1968.
    • Kullenberg, G.: Results of diffusion experiments in the upper region of the sea, Dept. Phys. Oceanogr., Univ. Copenhagen, Rep. No. 12, 66 pp., 1971.
    • Kunze, E., Rosenfeld, L. K., Carter, G. S., and Gregg, M. C.: Internal waves in Monterey submarine canyon, J. Phys. Oceanogr., 32, 1890-1913, 2002.
    • Larsen, T. L., Olaussen, S., Sundvoll, B., and Heeremans, M.: The Permo-Carboniferous Oslo Rift through six stages and 65 million years, Episodes, 31, 52-58, 2008.
    • Lepland, A., Bøe, R., Lepland, A., and Totland, O.: Monitoring the volume and lateral spread of disposed sediments by acoustic methods, Oslo Harbor, Norway, J. Enviriron. Man., 90, 11, 3589-3598, 2009.
    • Osborne, T. R.: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83-89, 1980.
    • Stacey, M. W.: Review of the partition of tidal energy in five Canadian fjords, J. Coast. Res., 21, 731-746, 2005.
    • Stashchuk, N., Inall, M., and Vlasenko, V.: Analysis of supercritical stratified tidal flow in a Scottish fjord, J. Phys. Oceanogr., 37, 1793-1810, 2007.
    • Stigebrandt, A.: Vertical diffusion driven by internal waves in a sill fjord, J. Phys. Oceanogr., 6, 486-495, 1976.
    • Stigebrandt, A.: Observational evidence for vertical diffusion driven by internal waves of tidal origin in the Oslofjord, J. Phys. Oceanogr., 9, 435-441, 1979.
    • Stigebrandt, A.: Some aspects of tidal interaction with fjord constrictions, Estuar. Coast. Mar. Sci., 11, 151-166, 1980.
    • Stigebrandt, A.: Resistance to barotropic tidal flow in straits by baroclinic wave drag, J. Phys. Oceanogr., 29, 191-197, 1999.
    • Stigebrandt, A. and Aure, J.: Vertical mixing in basin waters of fjords, J. Phys. Oceanogr., 19, 917-926, 1989.
    • Svendsen, H.: Mixing and exchange processes in estuaries, fjords and shelf waters, in: The Role of Freshwatwer Outflow in Coastal Marine Ecosystems, NATO ASI Series, Vol. G7, editor S. Skreslet, Springer-Verlag Berlin Heidelberg, 13-45, 1986.
    • Syvitski, J. P. M., Burrell, D. C., and Skei, J. M.: Fjords - Processes and Products, Springer-Verlag, New York Inc., 379 pp., 1987.
    • Saelen, O. H.: Temperature variations and heat transport in the Nordfjord, Bergen Museums a˚rbok 1946-1947, Nat. Vit. rekke, 6, 28 pp., 1948.
    • Thorpe, S. A.: The Turbulent Ocean. Cambridge University Press, 439 pp., 2005.
    • Xing, J. and Davies A. M.: On the interaction of internal tides over two adjacent sills in a fjord, J. Geophys. Res., 116, C04022, doi:10.1029/2010JC006333, 2011.
    • Zeilon, N.: On the tidal boundary waves and related hydrodynamical problems. Kungl. Svenska Vetenskapsakademiens Handlingar, 47, 46 pp., 1912.
    • Zeilon, N.: On the seiches of the Gullmar Fjord, Svenska Hydrog. - Biolog. Komm. Skrifter, 5, 1-17, 1913.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article