Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schellenberger, Thomas; Dunse, Thorben; Kääb, Andreas; Schuler, Thomas Vikhamar; Hagen, Jon Ove; Reijmer, Carleen H. (2017)
Languages: English
Types: Unknown
Basin-3, the largest outlet basin of the Austfonna ice cap, started to surge in autumn 2012. A maximum velocity of 18.8 m d-1 was found in December 2012 / January 2013. Here we present a time series of area wide velocity fields from synthetic aperture radar (SAR) offset tracking and Global Positioning System (GPS) data in the aftermath of the velocity maximum, extending the previously published data from May 2013 to July 2016. We find that terminus velocity slowed down by ~ 50 % until spring 2014, whereas the upper parts of the basin continued to speed-up and reached their maximum only in summer 2014. Until the date of writing (July 2016), Basin-3 maintained high velocity with maxima between 8.9–11.4 m d-1. Summer speed-ups were superimposed even on the otherwise fast surge motion. The total frontal ablation Af over the period 19 April 2012 to 26 July 2016 was calculated to 22.2 ± 8.1 Gt (5.2 ± 1.9 Gt yr-1) from the ice mass flux qfg = 33.2 ± 11.5 Gt (7.8 ± 2.7 Gt yr-1) and the terminus mass change qt = 11.0 ± 3.4 Gt (2.6 ± 0.8 Gt yr-1). Additional advance of the terminus led to a total sea-level rise equivalent of 31.3 ± 11.2 Gt (7.3 ± 2.6 Gt yr-1).

This rate of frontal ablation roughly equals previous estimates of both the calving flux and total mass loss from the entire archipelago, resulting in a doubling of the current ice-mass loss from Svalbard. In vicinity of Basin-3, we also observe a terminus advance and a speed-up of the northern part of Basin-2 starting in autumn 2014, with surface velocity reaching 8.71 m d-1 in August 2015. The related ice mass loss of Basin-2 between 20 June 2015 and 26 July 2016 amounts to 0.8 Gt (min: 0.3 Gt, max: 1.6 Gt). Accounting also for the replacement of ocean water, we find a total sea-level rise equivalent of 1.1 Gt (min: 0.5 Gt, max: 2.1 Gt).
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects


Cite this article

Collected from