Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Marshall, Michael; Norton-Griffiths, Michael; Herr, Harvey; Lamprey, Richard; Sheffield, Justin; Vagen, Tor; Okotto-Okotto, Joseph (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Q, QE500-639.5, Dynamic and structural geology, Science, QE1-996.5, Geology
A growing body of research shows the importance of land use/cover change (LULCC) on modifying the Earth system. Land surface models are used to stimulate land–atmosphere dynamics at the macroscale, but model bias and uncertainty remain that need to be addressed before the importance of LULCC is fully realized. In this study, we propose a method of improving LULCC estimates for land surface modeling exercises. The method is driven by projectable socio-ecological geospatial predictors available seamlessly across sub-Saharan Africa and yielded continuous (annual) estimates of LULCC at 5 km  ×  5 km spatial resolution. The method was developed with 2252 sample area frames of 5 km  ×  5 km consisting of the proportion of several land cover types in Kenya over multiple years. Forty-three socio-ecological predictors were evaluated for model development. Machine learning was used for data reduction, and simple (functional) relationships defined by generalized additive models were constructed on a subset of the highest-ranked predictors (p ≤ 10) to estimate LULCC. The predictors explained 62 and 65 % of the variance in the proportion of agriculture and natural vegetation, respectively, but were less successful at estimating more descriptive land cover types. In each case, population density on an annual basis was the highest-ranked predictor. The approach was compared to a commonly used remote sensing classification procedure, given the wide use of such techniques for macroscale LULCC detection, and outperformed it for each land cover type. The approach was used to demonstrate significant trends in expanding (declining) agricultural (natural vegetation) land cover in Kenya from 1983 to 2012, with the largest increases (declines) occurring in densely populated high agricultural production zones. Future work should address the improvement (development) of existing (new) geospatial predictors and issues of model scalability and transferability.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alcamo, J., Schaldach, R., Koch, J., Kölking, C., Lapola, D., and Priess, J.: Evaluation of an integrated land use change model including a scenario analysis of land use change for continental Africa, Environ. Model. Softw., 26, 1017-1027, 2011.
    • Ali, A., de Bie, C. A. J. M., Skidmore, A. K., Scarrott, R. G., and Lymberakis, P.: Mapping the heterogeneity of natural and seminatural landscapes, Int. J. Appl. Earth Obs., 26, 176-183, 2014.
    • Anderson-Teixeira, K. J. and DeLucia, E. H.: The greenhouse gas value of ecosystems, Glob. Change Biol., 17, 425-438, 2011.
    • Baker, J., Ruan, X., Alcantara, A., Jones, T., Watkins, K., McDaniel, M., Frey, M., Crouse, N., Rajbhandari, R., Morehouse, J., Sanchez, J., Inglis, M., Baros, S., Penman, S., Morrison, S., Budge, T., and Stallcup, W.: Density-dependence in urban housing unit growth: An evaluation of the Pearl-Reed model for predicting housing unit stock at the census tract level, J. Econ. Soc. Meas. 33, 155-163, 2008.
    • Ban, Y., Gong, P., and Giri, C.: Global land cover mapping using Earth observation satellite data: Recent progresses and challenges, ISPRS J. Photogramm., 103, 1-6, 2015.
    • Binder, H. and Tutz, G.: A comparison of methods for the fitting of generalized additive models, Stat. Comput., 18, 87-99, 2007.
    • Breiman, L.: Random Forests, Mach. Learn., 45, 5-32, 2001.
    • Carrão, H., Gonalves, P., and Caetano, M.: A Nonlinear Harmonic Model for Fitting Satellite Image Time Series: Analysis and Prediction of Land Cover Dynamics, IEEE T. Geosci. Remote, 48, 1919-1930, 2010.
    • Chaney, N. W., Sheffield, J., Villarini, G., and Wood, E. F.: Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes, J. Climate, 27, 5815-5835, doi:10.1175/JCLI-D-13-00423.1, 2014 (data available at: http:// hydrology.princeton.edu/data.php, last access: 18 August 2016).
    • Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm., 103, 7-27, 2015.
    • Davin, E. L. and de Noblet-Ducoudré, N.: Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes, J. Climate, 23, 97-112, 2010.
    • Davis, H. C.: Demographic Projection Techniques for Regions and Smaller Areas: A Primer, UBC Press, Vancouver, Canada, UBC Press, 116 pp., 1995.
    • de Beurs, K. M. and Henebry, G. M.: A statistical framework for the analysis of long image time series, Int. J. Remote Sens., 26, 1551-1573, 2005.
    • de Bie, C. A. J. M., Nguyen, T. T. H., Ali, A., Scarrott, R., and Skidmore, A. K.: LaHMa: a landscape heterogeneity mapping method using hyper-temporal datasets, Int. J. Geogr. Inf. Sci., 26, 2177-2192, 2012.
    • DeFries, R. S., Field, C. B., Fung, I., Justice, C. O., Los, S., Matson, P. A., Matthews, E., Mooney, H. A., Potter, C. S., Prentice, K., Sellers, P. J., Townshend, J. R. G., Tucker, C. J., Ustin, S. L., and Vitousek, P. M.: Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation's functional properties, J. Geophys. Res.-Atmos., 100, 20867-20882, 1995.
    • Deichmann, U.: A Review of Spatial Population Database Design and Modeling (Technical Report No. 96-3), National Center for Geographic Information and Analysis, Santa Barbara, CA, 1996.
    • Eastman, R., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai, Y., Machado, E. A., and Crema, S. C.: Seasonal trend analysis of image time series, Int. J. Remote Sens., 30, 2721- 2726, doi:10.1080/01431160902755338, 2009.
    • EcoSystems Ltd: Integrated Land Use Survey: Final Report. Lake Basin Development Authority, Kisumu, Kenya, 1983.
    • EcoSystems Ltd: Integrated Land Use Database for Kenya. Minstry of Planning & Natural Development, Nairobi, Kenya, 1987.
    • Elzhov, T. V., Mullen, K. M., Spiess, A. N., and Bolker, B.: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds, 14 pp., Repository, CRAN, 2016.
    • Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.: Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res., 15, 3133-3181, 2014.
    • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Rowland, J., Romero, B., Husak, G. J., Michaelsen, J., and Verdin, A.: A Quasi-Global Precipitation Time Series for Drought Monitoring (No. 832), US Geological Survey Data Series, US Geological Survey, Washington, DC, available at: http://chg.geog.ucsb.edu/ data/ (last access: 15 Feburary 2015), 2014.
    • Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., and Husak, G.: A global satellite-assisted precipitation climatology, Earth Syst. Sci. Data, 7, 275-287, doi:10.5194/essd-7-275-2015, 2015.
    • Giri, C., Pengra, B., Long, J., and Loveland, T. R.: Next generation of global land cover characterization, mapping, and monitoring, Int. J. Appl. Earth Obs., 25, 30-37, 2013.
    • Grace, K., Husak, G., and Bogle, S.: Estimating agricultural production in marginal and food insecure areas in Kenya using very high resolution remotely sensed imagery, Appl. Geogr., 55, 257- 265, 2014.
    • Hansen, M. C., Stehman, S. V., and Potapov, P. V.: Quantification of global gross forest cover loss, P. Natl. Acad. Sci. USA, 107, 8650-8655, 2010.
    • Hansen, M. C. and Loveland, T. R.: A review of large area monitoring of land cover change using Landsat data, Remote Sens. Environ., Landsat Legacy Special Issue, 122, 66-74, 2012.
    • Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Appl. Eng. Agric., 1, 96-99, 1985.
    • Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, CRC Press, Chapman and Hall/CRC Boca Raton, Florida, USA, 353 pp., 1990.
    • Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to Global Warming, J. Climate, 19, 5686-5699, 2006.
    • Heistermann, M., Müller, C., and Ronneberger, K.: Land in sight?: Achievements, deficits and potentials of continental to global scale land-use modeling, Agric. Ecosyst. Environ., 114, 141- 158, 2006.
    • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965-1978, 2005.
    • Hijmans, R. J., Phillips, S., Leathwick, J., and Elith, J.: Species Distribution Modeling, 68 pp., Repository, CRAN, 9 January 2017.
    • Husak, G. J., Marshall, M. T., Michaelsen, J., Pedreros, D., Funk, C., and Galu, G.: Crop area estimation using high and medium resolution satellite imagery in areas with complex topography, J. Geophys. Res.-Atmos., 113, D14112, doi:10.1029/2007JD009175, 2008.
    • Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Holefilled SRTM for the globe Version 4, CGIAR-CSI SRTM 90m Database, available at: http://www.cgiar-csi.org/data/ srtm-90m-digital-elevation (last access: 1 August 2015), 2008.
    • Jayne, T. S. and Muyanga, M.: Land constraints in Kenya's densely populated rural areas: implications for food policy and institutional reform, Food Secur., 4, 399-421, 2012.
    • Jayne, T. S., Yamano, T., Weber, M. T., Tschirley, D., Benfica, R., Chapoto, A., and Zulu, B.: Smallholder income and land distribution in Africa: implications for poverty reduction strategies, Food Policy, 28, 253-275, 2003.
    • Kumar, S., Merwade, V., Rao, P. S. C., and Pijanowski, B. C.: Characterizing Long-Term Land Use/Cover Change in the United States from 1850-2000 Using a Nonlinear Bi-analytical Model, Ambio, 42, 285-297, 2013.
    • Lambin, E. F., Geist, H. J., and Lepers, E.: Dynamics of Land-Use and Land-Cover Change in Tropical Regions, Annu. Rev. Environ. Resour., 28, 205-241, 2003.
    • Lamprey, R. H.: Aerial Point Sampling (APS) Survey: Lake Basin, Machakos and Makueni, Kenya, 2012-13, Nairobi, Kenya, 2013.
    • Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O'Neill, B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek, E., Lindsay, K., and Thornton, P. E.: Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, J. Climate, 25, 3071-3095, 2012.
    • Lepers, E., Lambin, E. F., Janetos, A. C., DeFries, R., Achard, F., Ramankutty, N., and Scholes, R. J.: A Synthesis of Information on Rapid Land-cover Change for the Period 1981-2000, BioScience, 55, 115-124, 2005.
    • MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. É. Ó., and Taylor, R. G.: Quantitative maps of groundwater resources in Africa, Environ. Res. Lett., 7, 1-7, doi:10.1088/1748-9326/7/2/024009, 2012 (data available at: http://www.bgs.ac.uk/research/ groundwater/international/africanGroundwater/maps.html, last access: 23 July 2015).
    • Majale, M.: Employment creation through participatory urban planning and slum upgrading: The case of Kitale, Kenya. Habitat Int., Labour in Urban Areas, 32, 270-282, 2008.
    • Makarieva, A. M., Gorshkov, V. G., and Li, B.-L.: Revisiting forest impact on atmospheric water vapor transport and precipitation, Theor. Appl. Climatol., 111, 79-96, 2013.
    • Marshall, M. T., Husak, G. J., Michaelsen, J., Funk, C., Pedreros, D., and Adoum, A.: Testing a high-resolution satellite interpretation technique for crop area monitoring in developing countries, Int. J. Remote Sens., 32, 7997-8012, doi:10.1080/01431161.2010.532168, 2011.
    • Meiyappan, P., Dalton, M., O'Neill, B. C., and Jain, A. K.: Spatial modeling of agricultural land use change at global scale, Ecol. Model., 291, 152-174, 2014.
    • Moré, J. J.: The Levenberg-Marquardt algorithm: Implementation and theory, in: Numerical Analysis, Lecture Notes in Mathematics, edited by: Watson, G. A., Springer Berlin Heidelberg, 105- 116, 1978.
    • Ngetich, K. F., Mucheru-Muna, M., Mugwe, J. N., Shisanya, C. A., Diels, J., and Mugendi, D. N.: Length of growing season, rainfall temporal distribution, onset and cessation dates in the Kenyan highlands, Agric. For. Meteorol., 188, 24-32, 2014.
    • Norton-Griffiths, M.: Aerial Point Sampling for Land Use Surveys, J. Biogeogr., 15, 149-156, 1988.
    • Olofsson, P., Stehman, S. V., Woodcock, C. E., Sulla-Menashe, D., Sibley, A. M., Newell, J. D., Friedl, M. A., and Herold, M.: A global land-cover validation data set, part I: fundamental design principles, Int. J. Remote Sens., 33, 5768-5788, 2012.
    • Pengra, B., Long, J., Dahal, D., Stehman, S. V., and Loveland, T. R.: A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data, Remote Sens. Environ., 165, 234-248, 2015.
    • Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., and de Noblet, N.: Land use/land cover changes and climate: modeling analysis and observational evidence, Wiley Interdiscip. Rev., Clim. Change, 2, 828-850, 2011.
    • Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series, Remote Sens., 6, 6929-6960, doi:10.3390/rs6086929, 2014 (data available at: https://ecocast. arc.nasa.gov/data/pub/gimms/, last access: 11 June 2015).
    • Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol., 23, 479- 510, 2003.
    • Place, F.: Land Tenure and Agricultural Productivity in Africa: A Comparative Analysis of the Economics Literature and Recent Policy Strategies and Reforms, World Dev., The Limits of StateLed Land Reform, 37, 1326-1336, 2009.
    • Platts, P. J., Omeny, P. A., and Marchant, R.: AFRICLIM: highresolution climate projections for ecological applications in Africa, Afr. J. Ecol., 53, 103-108, doi:10.1111/aje.12180, 2014 (data available at: https://www.york.ac.uk/environment/research/ kite/resources/, last access: 18 June 2015).
    • Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.: A reconstruction of global agricultural areas and land cover for the last millennium, Global Biogeochem. Cy., 22, GB3018, doi:10.1029/2007GB003153, 2008.
    • Pricope, N. G., Husak, G., Lopez-Carr, D., Funk, C., and Michaelsen, J.: The climate-population nexus in the East African Horn: Emerging degradation trends in rangeland and pastoral livelihood zones, Glob. Environ. Change, 23, 1525-1541, 2013.
    • Rindfuss, R. R., Walsh, S. J., Turner, B. L., Fox, J., and Mishra, V.: Developing a science of land change: Challenges and methodological issues, P. Natl. Acad. Sci. USA, 101, 13976-13981, 2004.
    • Rounsevell, M. D. A., Arneth, A., Alexander, P., Brown, D. G., de Noblet-Ducoudré, N., Ellis, E., Finnigan, J., Galvin, K., Grigg, N., Harman, I., Lennox, J., Magliocca, N., Parker, D., O'Neill, B. C., Verburg, P. H., and Young, O.: Towards decision-based global land use models for improved understanding of the Earth system, Earth Syst. Dynam., 5, 117-137, doi:10.5194/esd-5-117- 2014, 2014.
    • Schaldach, R. and Priess, J. A.: Integrated Models of the Land System: A Review of Modelling Approaches on the Regional to Global Scale, Living Rev. Landsc. Res., 2, 5-34, doi:10.12942/lrlr-2008-1, 2008.
    • Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling, J. Climate, 19, 3088-3111, 2006.
    • Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk, J. P., Wirth, C., and Crevoisier, C.: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink, Global Biogeochem. Cy., 23, GB2022, doi:10.1029/2007gb003176, 2009.
    • Sterling, S. M., Ducharne, A., and Polcher, J.: The impact of global land-cover change on the terrestrial water cycle, Nat. Clim. Change, 3, 385-390, 2013.
    • Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., and Wang, Y.: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis, Remote Sens. Environ., 163, 326-340, 2015.
    • Turner, B. L., Lambin, E. F., and Reenberg, A.: The emergence of land change science for global environmental change and sustainability, P. Natl. Acad. Sci. USA, 104, 20666-20671, 2007.
    • Turner, B. L., Janetos, A. C., Verbug, P. H., and Murray, A. T.: Land System Architecture: Using Land Systems to Adapt and Mitigate Global Environmental Change, Glob. Environ. Change, 232, 395-397, 2013.
    • UNEP/GRID: Sioux Falls, African Population Distribution Database (APDD), available at: http://na.unep.net/siouxfalls/ datasets/datalist.php (last access: 26 March 2015), 1987.
    • UNEP: Africa: Atlas of Our Changing Environment, UN Environment Programme, Nairobi, Kenya, 374 pp., 2008.
    • Vågen, T.-G., Winowiecki, L.A., Tondoh, J. E., Desta, L. T., and Gumbricht, T.: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance, Geoderma, 263, 216- 225, 2016.
    • van Asselen, S. and Verburg, P. H.: Land cover change or landuse intensification: simulating land system change with a globalscale land change model, Global Change Biol., 19, 3648-3667, 2013.
    • Veldkamp, A. and Fresco, L. O.: CLUE-CR: An integrated multiscale model to simulate land use change scenarios in Costa Rica, Ecol. Model., 91, 231-248, 1996.
    • Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., and Mastura, S. S. A.: Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model, Environ. Manage., 30, 391-405, 2002.
    • Verburg, P. H., Neumann, K., and Nol, L.: Challenges in using land use and land cover data for global change studies, Glob. Change Biol., 17, 974-989, 2011.
    • Ward, D. S., Mahowald, N. M., and Kloster, S.: Potential climate forcing of land use and land cover change, Atmos. Chem. Phys., 14, 12701-12724, doi:10.5194/acp-14-12701-2014, 2014.
    • Wilson, T.: New Evaluations of Simple Models for Small Area Population Forecasts: Small Area Population Forecasts, Popul. Space Place, 21, 335-353, 2014.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article